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An account of second-order fractional-step methods and boundary conditions for
the incompressible Navier–Stokes equations is presented. The goals of the work were
(i) identification and analysis of all possible splitting methods of second-order split-
ting accuracy, and (ii) determination of consistent boundary conditions that yield
second-order-accurate solutions. Exact and approximate block-factorization tech-
niques were used to construct second-order splitting methods. It has been found that
only three canonical types (D, P, and M) of splitting methods are nondegenerate,
and all other second-order splitting schemes are either degenerate or equivalent to
them. Investigation of the properties of the canonical methods indicates that a method
of type D is recommended for computations in which zero divergence is preferred,
while a method of type P is better suited to cases where highly accurate pressure
is more desirable. The consistent boundary conditions on the tentative velocity and
pressure have been determined by a procedure that consists of approximation of the
split equations and the boundary limit of the result. It has been found that the pres-
sure boundary condition is independent of the type of fractional-step methods. The
consistent boundary conditions on the tentative velocity were determined in terms of
the natural boundary condition and derivatives of quantities available at the current
time step (to be evaluated by extrapolation). Second-order fractional-step methods
that admit the zero-pressure-gradient boundary condition have been derived by using
a transformation that involves the “delta form” pressure. The boundary condition on
the new tentative velocity becomes greatly simplified due to improved accuracy built
into the transformation. c© 2001 Academic Press
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1. INTRODUCTION

This paper is concerned with fractional-step methods and boundary conditions for the
Navier–Stokes equations that describe the three-dimensional, unsteady incompressible flow
in primitive variables. Numerical solution of the discretized Navier–Stokes equations is ex-
pensive in general, because the resulting algebraic equations for the velocity components and
pressure are coupled and hence form a very large system. This difficulty can be alleviated by
employing a fractional-step method in which the coupled system is split into decoupled sys-
tems of much smaller size that can be solved with much less computational cost [4, 6, 11, 12].

There are two important issues that need to be properly accounted for in the construc-
tion and implementation of a fractional-step method: (i) splitting (or decoupling) of the
equations (or operators); and (ii) boundary conditions associated with the tentative velocity
and pressure. These issues have been subject to controversy in the literature primarily be-
cause they are not independent of each other and involve implementation details such as
discretization schemes (both time and space) and configuration of computational domain.
The accuracy of the solutions obtained by a fractional-step method depends on the accu-
racy of the time-advancement method, splitting method, and boundary conditions, which
are referred to hereinafter as thetime accuracy, splitting accuracy, andaccuracy of the
boundary conditions, respectively. The same accuracy of splitting and boundary conditions
for a fractional-step method is guaranteed only if they areconsistentwith the discretized
Navier–Stokes equations and natural boundary conditions to the order of accuracy of the
time-advancement method.

The purpose of the present work is twofold: (i) to identify and analyze all possible split-
ting methods of second-order splitting accuracy; and (ii) to determine consistent boundary
conditions that yield second-order-accurate solutions. The account given here is straight-
forward and the results do not depend on a particular discretization scheme for time and
spatial derivatives or the geometry of the computational domain.

It was shown by the recent studies of Dukowicz and Dvinsky [5] and Perot [10] that split-
ting in a fractional-step method can be regarded as approximate block-factorization of the
discretized equations. The splitting accuracy of equations obtained byad hocsplitting may
or may not be of the same order of time accuracy. However, splitting based on approximate
factorization always guarantees that the resulting system of equations isconsistentwith the
unsplit equations to the order of accuracy of the time-advancement method; i.e., the splitting
accuracy is of the same order of the time accuracy. This distinguished feature of approximate
factorization is used to construct fractional-step methods of second-order accuracy in this
work. The procedure consists of two stages: exact and approximate block-factorizations.
All possible splittings of the discretized Navier–Stokes equations have been derived by
exact block-factorization (developed in Section 3). The results have been approximated
to second-order accuracy and analyzed to determine three non-degenerate fractional-step
methods referred to as thecanonical methodsof type D, P, and M, respectively (see Section
4). Notice that all other fractional-step methods developed on the basis of approximate fac-
torization are either degenerate or equivalent to one of the canonical methods. The present
account can be considered as a generalization of the view held in Dukowicz and Dvinsky
[5] and Perot [10].

The solutions to a canonical fractional-step method of second-order accuracy are not
guaranteed to be second-order accurate, if the boundary conditions for the split equations
are not specified properly. The boundary conditions on the nonphysical quantities in the
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split equations cannot be specifieda priori, and hence the crux of the determination of
the boundary conditions is to express them in terms of known quantities available at the
current time step. It is desired to have boundary conditions that areconsistentwith the split
equations of the fractional-step methods. By consistency of boundary conditions, it is meant
that the boundary conditions satisfy the split equations at the boundary to the order of the
splitting accuracy or equivalently the time accuracy. The consistent boundary conditions can
be identified by the limiting process of the equations obtained by consistent approximation
(see Section 6). It has been found that the procedure developed in this work can be used as
a powerful tool in finding the consistent boundary condition for a fractional-step method.

There has been a certain degree of ambiguity and controversy in how the boundary
conditions on the pressure are implemented in practice (see Section 6). In particular, appli-
cation of the homogeneous Neumann boundary condition on the pressure leads to results
of first-order accuracy only. Second-order fractional-step methods that admit the homo-
geneous Neumann boundary condition have been developed by transforming the solution
variables and right-hand sides of the equations of the canonical methods (see Section 7).
It is shown that the “delta-form” pressure, which appeared previously in Van Kan [13] and
Dukowicz and Dvinsky [5], can in fact be derived from the transformation. Introduction
of the delta-form pressure yields improvement of the accuracy of the tentative velocity to
O(1t2), leading to the extremely simple boundary condition on the tentative velocity. The
role played by the delta-form pressure in the projection into the divergence-free subspace
is examined here in the light of Chorin’s decomposition idea [4].

This paper is organized as follows. The discretized formulation of the Navier–Stokes
equations is discussed in Section 2. In Section 3, a procedure by which exact block-
factorization of the discretized Navier–Stokes equations is carried out is explained. In
Section 4, second-order splitting methods are constructed by using approximate block-
factorization. The results are analyzed to identify three canonical second-order methods. In
Section 5, characteristics of the canonical methods are investigated, including splitting and
projection. Consistent boundary conditions on the tentative velocity and pressure are derived
in general form and the case of the steady zero-velocity boundary is discussed in Section 6.
In Section 7, the canonical methods are transformed such that the homogeneous Neumann
boundary conditions are satisfied by the pressure, and the consistent boundary conditions
for the new fractional-step methods are discussed. Concluding remarks are presented in
Section 8.

2. DISCRETIZED FORMULATION OF THE NAVIER–STOKES EQUATIONS

The incompressible Navier–Stokes equations, which consist of the momentum equations
and continuity equation, can be written as

∂u
∂t
+ (u · ∇)u = −∇ p+ 1

Re
∇2u, (2.1a)

∇ · u = 0, (2.1b)

whereu(x, t) andp(x, t) are the velocity vector and pressure, respectively. The momentum
and continuity equations have been made dimensionless by an appropriate reference velocity
and length scale and Re denotes the Reynolds number of the flow under consideration. In this
work, the initial velocity field is assumed to be divergence-free. The boundary conditions
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on the velocity components are usually specified on the boundary atxB:

uB(t) = u(xB, t). (2.2)

Since it is difficult to know the boundary condition on the pressurea priori in most practical
computations, it is a common practice to derive them from appropriate considerations (rather
than specify them).

The major difficulty in obtaining a time-accurate numerical solution for an incompressible
flow arises from the fact that the time derivative does not appear explicitly in the continuity
equation (2.1b). The continuity equation plays a role of kinematic constraint on the velocity
vector field via the implicit coupling between the pressure and velocity fields. Since the
Navier–Stokes equations are a coupled system, it is important to develop simplified and
efficiently solvable numerical approximations. This can be achieved by decoupling the
pressure computation from that of the velocity, thereby reducing the problem to a system
of separately-solvable equations.

When the Navier–Stokes equations (2.1) are discretized only in time by appropriate
second-order time-advancement methods, the semi-discrete equations can be written as

Au(n+1) +1tGp(n+1) = r , (2.3a)

Du(n+1) = 0, (2.3b)

whereA,G= grad andD= div are thecontinuousdifferential operators and the right-hand
side vectorr contains all the quantities known at the current time step,tn. The solutions
u(n+1) andp(n+1) of the semidiscrete equations (2.3) are regarded as functions of the space
variable. The differential operatorA of a second-order method can be written as

A = 1−1tB, (2.4)

regardless of the choice of the time-advancement scheme(s). If the second-order Crank–
Nicolson method is used in a semi-implicit scheme, the differential operatorB takes the
form of

B = 1

2Re
L, (2.5)

whereL = ∇2 represents the Laplacian operator. In the case of a fully explicit scheme,
B = 0 andA = 1. The natural boundary condition for the discretized equations can be
expressed as

u(n+1)
B = u(xB, tn+1). (2.6)

Equations in semidiscrete form are useful in analyzing a fractional-step method in general
and in finding its boundary conditions in particular. The consistent boundary conditions that
are independent of the discretization scheme for spatial derivatives can be found only if
semidiscrete equations are considered.

When the Navier–Stokes equations (2.1) are fully discretized by appropriate discretiza-
tion schemes for spatial derivatives and second-order methods for time advancement, the
resulting system of algebraic equations can be written in matrix–vector form as[

A 1tG
D 0

][
u(n+1)

p(n+1)

]
=
[

r
0

]
+
[
b
c

]
, (2.7)
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where the solution vector consists of velocity componentsu(n+1) and pressurep(n+1) at the
interior gridpoints. The block matrix of algebraic equations (2.7) denoted by

ΓNS =
[
A 1tG
D 0

]
(2.8)

shall be referred to as thesystem matrixhereinafter. It has three nonzero submatrices rep-
resenting discretization of the respective spatial derivatives.

The submatrixA is banded in most cases because it is desirable to treat viscous terms
by an implicit method in order to avoid a highly stiff system; when all the terms in the
momentum equations are treated by an explicit scheme,A becomes diagonal. The submatrix
G represents the effect of the pressure force andD denotes the discretized divergence
operator in the continuity equation. These submatricesA,G, andD are discrete equivalents
of the differential operatorsA,G, andD, respectively. The first termr on the right-hand
side represents all the quantities in the interior of the domain known at the current time
step,tn. Theboundary terms, b andc, are the discretized equivalent of the natural boundary
conditions specified by the problem formulation.

The submatrixA represents advancement of the momentum equations (2.7) in time and
can be written as

A = l−1tB, (2.9)

regardless of the particular choice of the time-advancement scheme(s) used. WhenA takes
the form ofM−1tB (e.g., in finite-element discretization,M represents the mass matrix),
it can always be transformed into the form (2.9). If a fully-explicit scheme is used,B = 0
andA becomesA = l, wherel is the identity matrix. In a semi-implicit scheme where the
second-order Crank–Nicolson method is used for the viscous terms,B is given by

B = 1

2Re
L, (2.10)

whereL denotes the discrete Laplace operator; and in the case of a fully implicit scheme
with the second-order Crank–Nicolson method for the viscous and nonlinear terms, it takes
the form of

B = 1

2Re
L+ 1

2
N, (2.11)

whereN represents the discrete operator involving implicit treatment of the nonlinear terms.
A typical fractional-step method that splits the original equations (2.7) into two parts can

be written in approximate-factorization form as[
A 0
D −1tDG

][
u∗

φ(n+1)

]
=
[

r
0

]
+
[
b1

c1

]
, (2.12a)

[
l 1tG
0 l

][
u(n+1)

φ(n+1)

]
=
[

u∗

φ(n+1)

]
+
[
b2

c2

]
, (2.12b)

whereu∗ is called thetentative velocityandφ(n+1) is called thefictitious pressure. These
quantities introduced due to the splitting are not considered to be physical. The values of
the intermediate boundary terms,b1, b2, c1, andc2, of the split parts are to be determined
in order to solve the split systems of equations (2.12). Properties of this method and the
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boundary conditions are discussed in detail in Section 5. The solution procedure consists
of the three basic operations: (i) advancement of velocity by nonlinear and viscous terms
in (2.12a); (ii) computation of the pressureφ by solving the Poisson equation in (2.12a);
and (iii) update of velocity with the computed pressure (or pressure correction) in (2.12b).
Note that the first two operations are represented by the block-lower-triangular matrix and
the velocity update is represented by the block-upper-triangular matrix. It can be easily
shown that the system matrix of equations assembled from the split equations is in fact a
second-order approximation to the system matrixΓNS of the original equations (2.7).

One of the objectives of the present work is toderiveall possible second-order splitting
methods based on approximate factorization of the system matrixΓNS. To achieve the goal, a
systematic procedure is employed in two stages: exact block-factorization and approximate
block-factorization. Exact block-factorization of the system matrix yields 19 independent
two-, three-, and four-part factorizations. Splitting methods of second-order accuracy are
obtained by approximating the results toO(1t2) and discarding those which cannot be im-
plemented. Examination of the remaining legitimate methods reveals that only three splitting
methods are considered to be independent: two two-part methods and one three-part method.

3. EXACT BLOCK-FACTORIZATION OF THE SYSTEM MATRIX

3.1. Method of Exact Block-Factorization

Exact factorization is the crucial step toward constructing fractional-step methods that
have the specified splitting accuracy. The most general block-factorization of the system
matrix ΓNS of the discretized Navier–Stokes equations (2.7) involves the following four
factors: a unit block-lower-triangular matrixL, unit block-upper-triangular matrixU, and
two one-sided block-diagonal matricesD1 andD2 given by

L =
[

l1 0

c l2

]
, U =

[
l1 b

0 l2

]
, D1 =

[
a 0
0 l2

]
, D2 =

[
l1 0

0 d

]
. (3.1)

The submatricesl1 andl2 are the identity matrices whose size depends on the configuration
and size of the computational grid. Note that the four factors in (3.1) are the most basic
units and hence further factorization of any units yields redundant results. Hereinafter,
the individual block matrices obtained by exact factorization shall be referred to as the
factorization modulesormodulesin short. The lower-left blockc in a lower-triangular matrix
L involves the divergence operation on velocity and the upper-right blockb in an upper-
triangular matrixU involves the velocity update. Because the velocity update cannot be
carried out prior to the computation of the pressure in any fractional-step methods, a lower-
triangular matrix must always precede an upper-triangular matrix. Hence, an implementable
splitting method consists of a factorization ofLU type only, e.g.,L D1D2U, L D2U D1, and
D1L D2U (but notU D1D2L). This is certainly true of the example shown in (2.12).

In order for the block-factorization to be meaningful, the four submatricesa, b, c, andd
must satisfy the nontriviality condition:

a 6= 0, b 6= 0, c 6= 0, d 6= 0. (3.2)

The block-diagonal submatricesa andd in the block-diagonal modulesD1 and D2 are
given by

a = A, d = −1tDA−1G, (3.3)
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respectively. However, the submatricesb andc in the block-triangular modules take different
forms, depending on where they are located in individual factorizations (see below).

It has been found that there are 24 possible combinations of four-part factorizations.
Among the 24 combinations, 12 do not satisfy the nontriviality condition (3.2) and therefore
these trivial combinations must be discarded. The remaining 12 factorizations are

m̂1 · m̂2 · m̂3 · m̂4 =


L D1D2U, L D2D1U, L D1U D2, L D2U D1,

LU D1D2, LU D2D1, D1LU D2, D2LU D1,

D1L D2U, D2L D1U, D1D2LU, D2D1LU.

(3.4)

For the 12 remaining combinations, the submatricesb andc can take one of the 4 respective
forms:

b =


1tG 2 occurrences,

1tA−1G 6 occurrences,

−D−1 2 occurrences,

−AD−1 2 occurrences;

c =


D 2 occurrences,

DA−1 6 occurrences,

−1t−1G−1 2 occurrences,

−1t−1G−1A 2 occurrences.

(3.5)

Each of the 12 combinations (3.4) can be used to form exact factorizations of the system
matrix ΓNS into four, three, and two parts, respectively. Note that only the submatrixA is
square and can be inverted; the identity submatrices are trivial. Because the submatricesD
andG representing the divergence and gradient operators, respectively, cannot be inverted,
those factorizations involving inverses of the divergence or gradient operators are discarded.
When the system matrixΓNS is factored into three or two parts, submatrices having inverses
of the divergence or gradient operators may or may not disappear. The procedure and results
of the four-, three-, and two-part exact block-factorizations are summarized below.

3.2. Results of Exact Block-Factorization

Exact block-factorizations into four parts.When the system matrixΓNS is factored into
four parts, it can be written as

E(4)1 E(4)2 E(4)3 E(4)4 = m̂1 · m̂2 · m̂3 · m̂4, (3.6)

whereE(s)α denotes theαth factor in ans-part factorization and̂mα denotes theαth module
that can be selected from one of the 12 combinations in (3.4). Discarding 8 factorizations that
involve the inverse of the divergence or gradient operator, we find 4 legitimate factorizations
with four parts:

E(4)1 E(4)2 E(4)3 E(4)4 =



[
A 0
0 l

][
l 0
D l

][
l 0

0 −1tDA−1G

][
l 1tA−1G
0 l

]
,[

l 0

DA−1 l

][
l 0

0 −1tDA−1G

][
l 1tG
0 l

][
A 0

0 l

]
,[

l 0

DA−1 l

][
A 0
0 l

][
l 0

0 −1tDA−1G

][
l 1tA−1G
0 l

]
,[

l 0

DA−1 l

][
l 0

0 −1tDA−1G

][
A 0
0 l

][
l 1tA−1G
0 l

]
.

(3.7)
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Exact block-factorizations into three parts.A three-part block-factorization of the sys-
tem matrixΓNS can be constructed by combining any two adjacent factorization modules
from a combination in (3.4). For each of the 12 combinations, there are three ways to form
three-part exact factorizations,

E(3)1 E(3)2 E(3)3 =


m̂1 · m̂2 · m̂34,

m̂1 · m̂23 · m̂4,

m̂12 · m̂3 · m̂4,

(3.8)

where

m̂i1···i k =
i k∏

j=i1

m̂ j (3.9)

denotes a factor consisting ofk adjacent modules (with consecutive indicesi1, . . . , i k) from
one of the 12 possible choices in (3.4); for instance,m̂23 = m̂2m̂3. Because there are three
ways to form a three-part factorization, a total of 36 combinations of three-part factorizations
are possible. Among the 36 possibilities, 9 factorizations contain submatrices involvingD−1

and 9 involveG−1, leaving 18 legitimate three-part factorizations. Among the remaining
18 factorizations, only 9 are independent:

E(3)1 E(3)2 E(3)3 =



[
A 0
0 l

][
l 0

D −1tDA−1G

][
l 1tA−1G
0 l

]
,[

A 0
D l

][
l 0

0 −1tDA−1G

][
l 1tA−1G
0 l

]
[
A 0
0 l

][
l 0
D l

][
l 1tA−1G

0 −1tDA−1G

]
,[

l 0

DA−1 l

][
l 0

0 −1tDA−1G

][
A 1tG
0 l

]
,[

l 0

DA−1 −1tDA−1G

][
l 1tG
0 l

][
A 0
0 l

]
,[

l 0

DA−1 l

][
l 1tG

0 −1tDA−1G

][
A 0
0 l

]
,[

l 0

DA−1 −1tDA−1G

][
A 0
0 l

][
l 1tA−1G
0 l

]
,[

l 0

DA−1 l

][
A 0

0 −1tDA−1G

][
l 1tA−1G
0 l

]
,[

l 0

DA−1 l

][
A 0
0 l

][
l 1tA−1G

0 −1tDA−1G

]
.

(3.10)

Exact block factorizations into two parts.There are three ways to form two-part exact
factorizations for each of the 12 combinations in (3.4):

E(2)1 E(2)2 =


m̂1 · m̂234,

m̂12 · m̂34,

m̂123 · m̂4.

(3.11)
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Thirty-six combinations of two-part factorizations can be obtained in this manner, among
which 26 combinations are legitimate since 5 factorizations contain submatrices involving
D−1 and the other 5 involveG−1. Among the 26 legitimate factorizations, only 6 are
independent. The 6 independent block-factorizations with two parts are given by

E(2)1 E(2)2 =



[
A 0

D −1tDA−1G

][
l 1tA−1G
0 l

]
,[

A 0
D l

][
l 1tA−1G

0 −1tDA−1G

]
,[

A 0
0 l

][
l 1tA−1G

D 0

]
,[

l 0

DA−1 −1tDA−1G

][
A 1tG
0 l

]
,[

l 0

DA−1 l

][
A 1tG

0 −1tDA−1G

]
,[

l 1tG

DA−1 0

][
A 0
0 l

]
.

(3.12)

4. CONSTRUCTION OF SECOND-ORDER FRACTIONAL-STEP METHODS

4.1. Method of Approximate Block-Factorization

The exact block-factorizations (3.7), (3.10), and (3.12) of the system matrixΓNS contain
the three terms−1tDA−1G,1tA−1G, andDA−1, which involve the inverse of the submatrix
A. Because it often takes a tremendous amount of computer time and cost to obtain the in-
verseA−1 numerically, it is desirable to approximate the three terms−1tDA−1G,1tA−1G,
andDA−1 instead, except in the case of a fully explicit method. The purpose is to obtain ap-
proximations of the three terms to the accuracy of the time-advancement method, thereby
yielding consistent splitting methods. We first expand the inverseA−1 aboutI for small
values of1t ¿ 1:

A−1 = l+1tB+1t2B2+ · · · = l+
∞∑
j=1

1t j B j . (4.1)

When a method ofr th-order accuracy is used, the approximations to the three terms are
given by

−1tDA−1G = −1tD(l+ · · · +1tr−1Br−1)G+ O(1tr+1), (4.2a)

1tA−1G = 1t (l+ · · · +1tr−1Br−1)G+ O(1tr+1), (4.2b)

DA−1 = D(l+ · · · +1tr Br )+ O(1tr+1). (4.2c)

Since fractional-step methods having second-order accuracy are considered in this work,
the factored modules are approximated to second order in1t (with r = 2).

The next steps toward construction of fractional-step methods involve elimination of
the factorizations that cannot be implemented in practice and identification of those that
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are either degenerate to schemes with fewer factored parts or equivalent to other schemes
with the same number of factored parts. It has been found that only three factorizations are
nondegenerate. Others are either degenerate or equivalent to one of these three or else cannot
be implemented. By “degeneracy,” it is meant that when trivial operations in a method are
eliminated (e.g., those involving the trivial identity matrices), the method carries out exactly
the same operations in another method with fewer parts. By “equivalence,” it is meant that
the methods implement the identical operations in an identical sequence. Fractional-step
methods constructed from these nondegenerate factorizations are referred to as thecanonical
fractional-step methodshereinafter.

4.2. Second-Order Fractional-Step Methods

Two-part fractional-step methods.Substituting the approximations (4.2) withr = 2 into
the two-part exact factorizations (3.12) yields fractional-step methods with two parts, which
can be written as

Γ(2)1 Γ(2)2 =


m̂1 · m̂234,

m̂12 · m̂34,

m̂123 · m̂4,

(4.3)

whereΓ(s)α is theαth part of a splitting method withs parts and

m̂i1···i k = m̂i1···i k + O(1t2) (4.4)

represents the second-order approximation ofm̂i1···i k with an errorO(1t2); e.g.,m̂12 is the
second-order approximation of̂m12. Note thatm̂i1···i k 6=

∏i k
j=i1

m̂ j in general. The result is
summarized in Table I.

The six fractional-step methods can be grouped into two types according to which operator
in the system matrixΓNS of the Navier–Stokes equations (2.7) remains the same in the
approximated system matrixΓ(2)1 Γ(2)2 of the two-part methods. The approximated system

TABLE I

Second-Order Factorization of System MatrixΓNS into Two Parts

Code Factorization,Γ(2)
1 Γ(2)

2 Degen/equiv

D2A
[

A 0

D −1tDG

][
l 1tG
0 l

]
Nondegenerate

D2B
[

A 0
D l

][
l 1tG
0 −1tDG

]
⇔ D2A

D2C
[

A 0
0 l

][
l 1tG
D 0

]
Unimplementable

P2A
[

l 0
D+1tDB −1tDG

][
A 1tG
0 l

]
Nondegenerate

P2B
[

l 0
D+1tDB l

][
A 1tG
0 −1tDG

]
⇔ P2A

P2C
[

l 1tG
D+1tDB 0

][
A 0
0 l

]
Unimplementable

Note.Γ(s)
α is theαth part of a splitting method withs parts;⇔, equivalent to.
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matrixΓ(2)1 Γ(2)2 of D2A, D2B and D2C is given by

Γ(2)1 Γ(2)2 =
[
A 1tG−1t2BG
D 0

]
= ΓD. (4.5)

Comparison with the system matrixΓNS indicates that the pressure-gradient operator1tG
of ΓNS has been approximated by1tAG = 1tG−1t2BG = 1tG+ O(1t2), but the
divergence operatorD remains unchanged. These methods are said to be of type D (for
“divergence”). The system matrix of P2A and P2B is given by

Γ(2)1 Γ(2)2 =
[

A 1tG

D−1t2DB2
1t2DBG

]
= ΓP, (4.6)

from which one finds that the divergence operatorD of the original system matrixΓNS

has been approximated byD−1t2DB2 = D+ O(1t2) (or more properly the continuity
equation has been approximated), while the pressure-gradient term remains the same. (The
system matrix of D2C is slightly different.) These methods shall be referred to as methods
of type P (for “pressure”).

Not all the algorithms are implementable in practice, however. For instance, in the case
of D2C, the pressureφ(n+1) is not computed anywhere in the method and hence the velocity
u(n+1) cannot be updated, although the scheme can be “interpreted” as working like D2A.
It can be shown that P2C also cannot be implemented. All other methods are equivalent
to either D2A or P2A (see Table I). Fractional-step methods D2A and P2A are called the
canonical methods of type D and P, respectively.

Three-part fractional-step methods.Fractional-step methods with three parts,

Γ(3)1 Γ(3)2 Γ(3)3 =


m̂1 · m̂2 · m̂34,

m̂1 · m̂23 · m̂4,

m̂12 · m̂3 · m̂4,

(4.7)

can be obtained by substituting the approximations (4.2) withr = 2 into the corresponding
exact factorizations (3.10). Table II lists the resulting nine methods.

The nine methods can be grouped into three types according to the system matrix of the
methods. The system matrix of D3A, D3B, and D3C is given by

Γ(3)1 Γ(3)2 Γ(3)3 =
[
A 1tG−1t2BG
D 0

]
= ΓD, (4.8)

P3A, P3B, and P3C have the system matrix

Γ(3)1 Γ(3)2 Γ(3)3 =
[

A 1tG

D−1t2DB2
1t2DBG

]
= ΓP, (4.9)

and M3A, M3B, and M3C have

Γ(3)1 Γ(3)2 Γ(3)3 =
[

A 1tG−1t2BG

D−1t2DB2 −1t3DB2G

]
= ΓM . (4.10)

The system matrixΓM approximates both the pressure-gradient operator and divergence
operator (or the continuity equation) toO(1t2).
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TABLE II

Second-Order Factorization of System MatrixΓNS into Three Parts

Code Factorization,Γ(3)
1 Γ(3)

2 Γ(3)
3 Degen/equiv

D3A
[

A 0
0 I

][
I 0
D −1tDG

][
I 1tG
0 I

]
⇒ D2A

D3B
[

A 0
D I

][
I 0
0 −1tDG

][
I 1tG
0 I

]
⇒ D2A

D3C
[

A 0
0 I

][
I 0
D I

][
I 1tG
0 −1tDG

]
→ D2A

P3A
[

I 0
D+1tDB I

][
I 0
0 −1tDG

][
A 1tG
0 I

]
⇒ P2A

P3B
[

I 0
D+1tDB −1tDG

][
I 1tG
0 I

][
A 0
0 I

]
⇒ P2A

P3C
[

I 0
D+1tDB I

][
I 1tG
0 −1tDG

][
A 0
0 I

]
⇒ P2A

M3A
[

I 0
D+1tDB −1tDG

][
A 0
0 I

][
I 1tG
0 I

]
Nondegenerate

M3B
[

I 0
D+1tDB I

][
A 0
0 −1tDG

][
I 1tG
0 I

]
⇔ M3A

M3C
[

I 0
D+1tDB I

][
A 0
0 I

][
I 1tG
0 −1tDG

]
⇔ M3A

Note.Γ(s)
α is theαth part of a splitting method withs parts;⇒, degenerate to;→,

degenerate to by interpretation;⇔, equivalent to.

Degeneracy and equivalence of the methods have been examined. As shown in Table II,
D3A, D3B, and D3C are either degenerate or interpreted as being degenerate to the canoni-
cal method D2A; P3A, P3B, and P3C are degenerate to the canonical method P2A; and M3B
and M3C are equivalent to the three-part method M3A. Method M3A is nondegenerate and
has the system matrixΓM, which approximates both the pressure-gradient and divergence
operators of the original system matrixΓNS. It is called a canonical method of type M (after
“mixture”).

Four-part fractional-step methods.Substituting the approximations (4.2) withr = 2
into the four-part exact factorizations (3.7) yields fractional-step methods with four parts:

Γ(4)1 Γ(4)2 Γ(4)3 Γ(4)4 = m̂1 · m̂2 · m̂3 · m̂4. (4.11)

The four schemes are shown in Table III. Method D4 is of type D and degenerates to the
canonical method D2A; P4 of type P degenerates to P2A; and M4A and M4B of type M
degenerate to M3A. There are no nondegenerate fractional-methods that have four parts.

5. ANALYSIS OF THE CANONICAL FRACTIONAL-STEP METHODS

The three canonical methods of type D, P, and M obtained by exact and approximate
factorization can be written respectively as[

A 0
D −1tDG

][
l 1tG
0 l

][
u(n+1)

φ(n+1)

]
=
[

r
0

]
+
[

b
c

]
, (5.1a)
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TABLE III

Second-Order Factorization of System MatrixΓNS into Four Parts

Code Factorization,Γ(4)
1 Γ(4)

2 Γ(4)
3 Γ(4)

4 Degen/equiv

D4
[

A 0
0 I

][
I 0
D I

][
I 0
0 −1tDG

][
I 1tG
0 I

]
⇒ D2A

P4
[

I 0
D+1tDB I

][
I 0
0 −1tDG

][
I 1tG
0 I

][
A 0
0 I

]
⇒ P2A

M4A
[

I 0
D+1tDB I

][
A 0
0 I

][
I 0
0 −1tDG

][
I 1tG
0 I

]
⇒ M3A

M4B
[

I 0
D+1tDB I

][
I 0
0 −1tDG

][
A 0
0 I

][
I 1tG
0 I

]
⇒ M3A

Note.Γ(s)
α is theαth part of a splitting method withs parts;⇒, degenerate to.

[
l 0

D+1tDB −1tDG

][
A 1tG
0 l

][
u(n+1)

φ(n+1)

]
=
[

r
0

]
+
[

b
c

]
, (5.1b)

[
l 0

D+1tDB −1tDG

][
A 0
0 l

][
l 1tG
0 l

][
u(n+1)

φ(n+1)

]
=
[

r
0

]
+
[

b
c

]
. (5.1c)

The final form of a fractional-step method is obtained when the expression in the assembled
form (5.1) is split into the corresponding number of equations. Two-part methods of type D
and P have one tentative velocityu∗, while a three-part method of type M has two tentative
velocitiesu∗ andu∗∗.

The system matrices of the canonical methods are given by

ΓD =
[
A 1tG−1t2BG
D 0

]
, (5.2a)

ΓP =
[

A 1tG

D−1t2DB2
1t2DBG

]
, (5.2b)

ΓM =
[

A 1tG−1t2BG

D−1t2DB2 −1t3DB2G

]
, (5.2c)

respectively. Inspection of the system matrices reveals that the pressureφ(n+1) is always
first-order accurate in time, independent of the time-advancement scheme used [10]. This
observation should be properly interpreted. Note that the accuracy of terms involving the
pressure in the momentum and Poisson equations is always second order, since the pressure
φ(n+1) always appears with1t , e.g.,1tGφ(n+1) and−1tDGφ(n+1). Therefore, the accu-
racy of all the split and assembled equations of the canonical methods are second order,
an undoubtedly powerful guarantee provided by approximate factorization. The splitting
accuracy of fractional-step methods constructed byad hocsplitting may or may not be the
same as the time accuracy.

The splitting structure of the canonical methods is analyzed in what follows with a
particular emphasis placed on how the projection is approximated in a method. We shall
consider only fully or semi-implicit time-advancement methods (i.e.,B 6= 0), because if all
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the terms in the momentum equations are treated explicitly (i.e.,B = 0 andA = l), there
is no distinction among the three methods. When fully or semi-implicit time-advancement
methods are used, the submatrixA represents the time-advancement of the viscous and/or
nonlinear terms.

5.1. Canonical Fractional-Step Methods of Type D

The fractional-step method of type D has two split parts and can be written in semi-
discrete form as

Au∗ = r , Du∗ −1tDGφ(n+1) = 0, (5.3a,b)

u(n+1) +1tGφ(n+1) = u∗. (5.3c)

The “momentum equations” (5.3a) are advanced in time without the pressure-gradient term
to yield the tentative velocityu∗. The fictitious pressureφ(n+1) is computed via the Poisson
equation (5.3b) and the velocityu(n+1) is updated in (5.3c) by adding the gradient of the
computed pressure fieldφ(n+1). Combining the two equations (5.3b) and (5.3c) yields the
continuity equation for the velocityu(n+1),

Du(n+1) = D(u∗ −1tGφ(n+1)
) = 0, (5.4)

from which one finds that the updated velocity fieldu(n+1) is divergence-free; i.e., it is
identical to the original continuity equation (2.3b).

Combining the equations (5.3a) and (5.3c) yields the assembled equation

Au(n+1) +1tAGφ(n+1) = r . (5.5)

Comparison with the corresponding Navier–Stokes equations (2.3a) shows that the fictitious
pressureφ = φ(n+1) is related to the “actual” pressurep = p(n+1) by

Gp = AGφ = Gφ −1tBGφ, (5.6)

or equivalently,

Gφ = Gp+1tBGp+ O(1t2). (5.7)

The Poisson equation (5.4) states that the divergence-free vector fieldu(n+1) is obtained
from the tentative velocity fieldwD = u∗ by projecting out the gradient field1tGφ. The
projection taking place in a second-order method of type D is compared with the “exact” pro-
jection in the semi-discrete Navier–Stokes equations (2.3) in Fig. 1. This can be interpreted
as a second-order-accurate version of the exact projection (or Helmholtz decomposition)
in the Navier–Stokes equations proposed earlier by Chorin [4] and Temam [11, 12]. The
exact projection in the Navier–Stokes equations (2.3) can be represented by

DuNS = D
(
wNS−1tGp(n+1)

) = 0, (5.8)

whereuNS denotes the solution of the Navier–Stokes equations and

wNS = r + (1− A)uNS. (5.9)
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FIG. 1. Comparison of the projection in a second-order method of type D with the exact projection in
the Navier–Stokes equations: , second-order method of type D; , Navier–Stokes equations. The
solutionu(n+1) of this method is exactly divergence-free (within machine roundoff) and has a second-order error
u(n+1) = uNS+ O(1t2). The associated pressure gradientGφ is related to the actual pressure gradientGp by
Gφ = Gp+1tBGp+ O(1t2).

The difference betweenwD andwNS is given by

wD − wNS = 1t2BGp(n+1) + O(1t3), (5.10)

indicating that the velocity fieldu(n+1) has a second-order errorO(1t2).
The actual pressurep(n+1) which is not computed during time advancement in this method

may be obtained by a separate calculation (5.6). Because the velocity fieldu(n+1) is exactly
divergence-free in a method of type D, this “divergence-free” method is recommended for
computations in which incompressibility of the velocity field is of central interest and/or if
the computation of the actual pressurep is not needed during time advancement.

5.2. Canonical Fractional-Step Methods of Type P

The fractional-step method of type P that has two split parts can be written as

u∗ = r , D(1+1tB)u∗ −1tDGφ(n+1) = 0, (5.11a,b)

Au(n+1) +1tGφ(n+1) = u∗. (5.11c)

In this method, the “momentum equations” (5.11a) are advanced by an explicit method
without the pressure-gradient term and the implicit terms are advanced in the pressure-
correction equation (5.11c). Combining these two equations yields the assembled equation

Au(n+1) +1tGφ(n+1) = r . (5.12)

Comparison with the Navier–Stokes equations (2.3a) reveals that the pressure gradient is
identical to the “actual” pressure gradient in this method:

Gφ(n+1) = Gp(n+1). (5.13)
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FIG. 2. Comparison of the projection in a second-order method of type P with the exact projection in the
Navier–Stokes equations: , second-order method of type P; , Navier–Stokes equations. The solution
u(n+1) obtained by this method is approximately divergence-free toO(1t2) and has a second-order erroru(n+1) =
uNS+ O(1t2). The associated pressure gradientGφ is identical to the actual pressure gradientGp.

The Poisson equation (5.11b) by which the fictitious pressureφ(n+1) is computed can
be regarded as representing the projection of the method (see Fig. 2 for a schematic of the
projection). Here,

wP = u∗ +1tBu∗ (5.14)

is projected into the solenoidal subspace with the pressure gradient1tGφ(n+1) separated
out into the gradient field. Substituting the pressure-correction equation (5.11c) into the
Poisson equation (5.11b) yields

D(1−1t2B2)u(n+1) +1t2DBGφ(n+1) = 0, (5.15)

which indicates that the velocity fieldu(n+1) obtained by this method is only approximately
divergence-free; the divergence has anO(1t2) error, unlessDBGφ(n+1) = DB2u(n+1) is
satisfied everywhere in the computational domain. The difference betweenwP andwNS is

wP− wNS = −1t2
(
B2uNS−Gp(n+1)

)
, (5.16)

where the relation (5.13) betweenGφ(n+1) andGp(n+1) has been used.
Despite that the velocity fieldu(n+1) is only approximately divergence-free, a method

of type P is distinguished by its capability of the “exact” pressure (5.13). Hence, this
“pressure-accurate” method is recommended when accurate pressure is preferred to the
incompressibility of the velocity field or the actual pressurep should be computed during
time advancement.



FRACTIONAL-STEP METHODS FOR NS EQUATIONS 89

5.3. Canonical Fractional-Step Methods of Type M

In fractional-step methods of type M, the pressure gradient operator1tG and divergence
operatorD (or continuity equation) are approximated respectively by1tG−1t2BG and
D−1t2DB in the system matrix. Writing the three-part method in semidiscrete form, we
have

u∗ = r , D(1+1tB)u∗ −1tDGφ(n+1) = 0, (5.17a,b)

Au∗∗ = u∗, (5.17c)

u(n+1) +1tGφ(n+1) = u∗∗. (5.17d)

This method can be considered as a mixture (or hybrid) of methods of type D and P.
Assembling the equations (5.17a,c,d) yields

Au(n+1) +1tAGφ(n+1) = r , (5.18)

which is the same as the assembled equation (5.5) for a method of type D. The fictitious
pressureφ = φ(n+1) of this method is related to the “actual” pressurep = p(n+1) by

Gφ = Gφ +1tBGp+ O(1t2). (5.19)

The “momentum” and Poisson equations (5.17a,b) of this method are identical to those
(5.11a,b) of a type-P method. The fictitious pressureφ(n+1) is computed by solving the
Poisson equation (5.17b), which represents the projection of

wM = u∗ +1tBu∗ (5.20)

into the solenoidal subspace separating the pressure-gradient field1tGφ(n+1). Substituting
the implicit equation (5.17c) and the velocity-update equation (5.17d) into the Poisson
equation (5.17b) yields

D(1−1t2B2)u(n+1) −1t3DB2Gφ(n+1) = 0, (5.21)

showing that the velocity fieldu(n+1) is not exactly divergence-free; the divergence has an
O(1t2) error.

6. BOUNDARY CONDITIONS FOR THE CANONICAL FRACTIONAL-STEP METHODS

Canonical fractional-step methods of second-ordersplitting accuracyhave been con-
structed based on approximate factorization. In order to obtain second-order-accurate so-
lutions by a fractional-step method, the accuracy of the boundary conditions should match
the splitting accuracy as well. The difficulty is that the boundary conditions on the non-
physical quantities are not givena priori from the problem formulation and hence have to
be determined from the split equations.

In this work, it is shown that the boundary conditions that are consistent with the split
equations to the splitting accuracy can be found in a systematic way. The general rule for
systematic identification of the consistent boundary conditions is

(i) to approximate the expressions for the tentative velocity and pressure to the splitting
accuracy in terms of quantities known at the current time step; and
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(ii) to take the limit of the result as the boundary is approached.

The first approximation step involves conversion of implicit terms to the corresponding
explicit expressions and the second boundary-limit step may involve extrapolation to the
boundary of the data in practice.

6.1. Boundary Condition on the Pressure

For boundary conditions on pressure, the Neumann type is considered herein, since it is a
common practice to use it to compute pressure. It has been widely known that the boundary
condition on the pressure is the major source of difficulties when fractional-step methods
are considered for computing incompressible flow problems. The greatest difficulty in the
determination of the boundary condition on the pressureφ(n+1) is primarily due to the fact
that the natural boundary condition on its counterpartp(n+1) is not available. Therefore,
one has toderivethe approximate expression for the pressure boundary condition in terms
of quantities that are available at the current time step.

In order to match the splitting accuracyO(1t2), the approximate boundary condition
on the pressure suffices to be first-order accurate. As Perot [10] correctly pointed out, the
first-order accuracy of the pressureφ(n+1) is intrinsic in the equations of fractional-step
methods (see also Section 5). Attempts to improve the order of accuracy of a fractional-step
method with an “improved” pressure boundary condition may yieldmore accurate results,
which doesnotnecessarily lead to solutions ofimproved order of accuracy. This distinction
should be made explicit and clear.

The simplest choice to meet theO(1t) requirement for the pressure would be to approx-
imateGφ(n+1) in terms ofGφ(n) to O(1t) sinceφ(n) is already known at the current time
step. Expandingφ(n+1) aboutφ(n) in time,

φ(n+1) = φ(n) +1t
∂φ(n)

∂t
+ O(1t2), (6.1)

one finds that it suffices to keep the leading term alone to obtain the second-order-accurate
results. By taking the limit of (6.1) as the boundary is approached, the consistent boundary
condition on the pressure is obtained,[

Gnφ
(n+1)

]
B =

[
Gnφ

(n)
]

B + O(1t), (6.2)

where

[·]B = lim
x→xB

[·] (6.3)

denotes the limit as the boundaryxB is approached (boundary limit) andGn = n ·G denotes
the gradient in the directionn normal to the boundary. This boundary condition is referred
to as thecurrent pressure-gradient condition. The value of the current pressure gradient
Gφ(n) at the boundary may be determined by extrapolating to the boundary the pressure
field φ(n)(x) known at the current time step. Since the pressure boundary condition has
been obtained independent of the choice of a fractional-step method, it can be used for any
fractional-step methods of second-order accuracy. This pressure boundary condition (6.2)
may be considered as theuniversalpressure boundary condition.
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An alternative expression for the pressure boundary condition can be obtained from the
assembled equations (5.12), (5.5), and (5.18) of methods of type D, P, and M, respec-
tively. Approximation of these equations toO(1t2) with the term1tBu(n+1) replaced by
1tBu(n) + O(1t2) yields the same expression for the pressure gradient, namely,

Gφ(n+1) = 1

1t

(
r − u(n+1)

)+ Bu(n) + O(1t), (6.4)

because only first-order accuracy is required for the pressure. It should be pointed out that the
implicit termAu(n+1) in the assembled equation has been converted to explicit equivalents
by the above approximation. Taking the limit to the boundary gives the alternative expression
for the pressure boundary condition,

[
Gnφ

(n+1)
]

B =
1

1t

(
[n · r ]B − n · u(n+1)

B

)+ [n · Bu(n)
]

B + O(1t), (6.5)

whereu(n+1)
B is the value given by the natural boundary condition (2.2). The boundary

condition can be evaluated by extrapolating the datar andBu(n) to the boundary. This
alternative expression for the pressure boundary condition agrees with the current pressure
gradient condition (6.2) toO(1t).

It is apparent that the zero-pressure-gradient condition[
Gnφ

(n+1)
]

B = 0+ O(1) (6.6)

of the marker-and-cell (MAC) method (Harlow and Welch [6]) is zeroth-order accurate and
therefore will produce a velocity fieldu(n+1) of only first-order accuracy (see for example
Armfield and Street [1]).

6.2. Boundary Conditions on the Tentative Velocities

The boundary conditions on the tentative velocities should be determined from the split
equations and hence are method specific.

Boundary conditions for fractional-step methods of type D.In order to solve the mo-
mentum and Poisson equations (5.3a,b) of a method of type D, the boundary condition on
the tentative velocityu∗ should be specified because solving the corresponding algebraic
equations (5.1a) involves inversion of the matricesA andDG. However, the update of the
velocityu(n+1) in (5.3c) involves assignment of data at the interior gridpoints only, for which
no boundary conditions are required. The boundary condition on the tentative velocityu∗

of this method can be found from either of the split equations (5.3a,c); the two should give
the same result toO(1t2). The former equation (5.3a) gives

u∗ −1tBu∗ = r , (6.7)

which under the approximation toO(1t2) reduces to

u∗ = r +1tBu(n) + O(1t2). (6.8)

The second-order boundary condition on the tentative velocity is given by

[u∗]B = [r ]B +1t
[
Bu(n)

]
B + O(1t2). (6.9)
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An alternative yet equivalent boundary condition onu∗ can be derived from the latter
equation (5.3c) in a simpler way. Approximating the pressure gradient toO(1t) using the
expansion (6.1) and taking the limit to the boundary yields

[u∗]B = u(n+1)
B +1t

[
Gφ(n)

]
B + O(1t2), (6.10)

which should agree with the equivalent expression (6.9) toO(1t2). Kim and Moin [8] used
a different approach to arrive at the same result.

Boundary conditions for fractional-step methods of type P.In this method, the boundary
condition onu∗ needs to be determined for solution of the coupled equations (5.11b,c). The
boundary condition can be found by examining either of the split equations (5.11a,c) by
the same procedure explained for methods of type D. From the former equation (5.11a), it
immediately follows that

[u∗]B = [r ]B + O(1t2). (6.11)

Approximating the latter equation (5.11c) toO(1t2) and taking the boundary limit of the
result gives the alternative expression:

[u∗]B = u(n+1)
B +1t

[
Gφ(n) − Bu(n)

]
B + O(1t2). (6.12)

The boundary condition on the tentative velocity of methods D and P differs by an
amount1t [Bu(n)]B, which reflects the difference in splitting between the two methods.
This explicit term derives from approximation of its implicit equivalent1tBu(n+1) in the
operatorAu(n+1). It would be of interest to investigate the effect of the implicit-to-explicit
conversion on stability of the solutions.

Boundary conditions for fractional-step methods of type M.The method of type M
consists of three split parts and, therefore, there are two tentative velocitiesu∗ andu∗∗.
The solution of Eqs. (5.17b,c) requires the boundary values ofu∗ andu∗∗. The boundary
conditions on the two tentative velocities can be found by examining the split equations
(5.17a,d). The first equation (5.17a) immediately gives the boundary condition on the first
tentative velocityu∗:

[u∗]B = [r ]B + O(1t2). (6.13)

Approximating the last equation (5.17d) toO(1t2) and taking the boundary limit of the
result yields the boundary condition on the second tentative velocityu∗∗:

[u∗∗]B = u(n+1)
B +1t

[
Gφ(n)

]
B + O(1t2). (6.14)

The boundary conditions (6.13) and (6.14) are identical to those of methods of type P and
D, respectively, reminiscent of the mixture of the two methods.

The consistent boundary conditions on the tentative velocities of methods of type D, P,
and M are summarized in Table IV.
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TABLE IV

Consistent Second-Order Boundary Conditions for Canonical

Fractional-Step Methods of Type D, P, and M

Type Gnφ
(n+1) u∗ u∗∗

D Gnφ
(n) or u(n+1) +1tGφ(n) or —

n · [1t−1(r − u(n+1))+ Bu(n)] r +1tBu(n)

P Gnφ
(n) or u(n+1) +1t (Gφ(n) − Bu(n)) or —

n · [1t−1(r − u(n+1))+ Bu(n)] r

M Gnφ
(n) or u(n+1) +1t (Gφ(n) − Bu(n)) or u(n+1) +1tGφ(n) or

n · [1t−1(r − u(n+1))+ Bu(n)] r r +1tBu(n)

Note. All expressions are to be evaluated by extrapolating the corresponding data at the interior of the
computational domain, exceptu(n+1) for which the natural boundary condition is imposed.

6.3. Boundary Conditions for a Flow with a Steady Zero-Velocity Wall

Because many standard flow cases consist of steady zero-velocity walls,

u(n+1)
B = u(n)B = · · · = 0, (6.15)

it is of interest to examine the boundary conditions on the pressure and tentative velocities
that can be used in computation of these flows. A stationary no-slip wall is a typical example
of such a boundary condition. In this case, the nonlinear terms vanish at the boundary and
hence only the viscous terms appear in the boundary conditions on the tentative velocities.

Suppose that the second-order implicit Crank–Nicolson method is used for the viscous
terms and an arbitrary second-order explicit method is used for the nonlinear terms:B =
1
2Re−1L, whereL is the Laplacian operator. Hereinafter, this time-advancement method
shall be referred to as the AXCN method. The boundary conditions for the methods of type
D, P, and M are compared in Table V.

The alternative pressure boundary condition (6.5) reduces to

[
Gnφ

(n+1)
]

B =
1

Re

[
n · Lu(n)

]
B + O(1t). (6.16)

TABLE V

Second-Order Boundary Conditions for Canonical Methods:

Flow with Steady Zero-Velocity Wall

Type Gnφ
(n+1) u∗ u∗∗

D Gnφ
(n) or

1

Re
n · Lu(n)

1t

Re
Lu(n) —

P Gnφ
(n) or

1

Re
n · Lu(n)

1t

2Re
Lu(n) —

M Gnφ
(n) or

1

Re
n · Lu(n)

1t

2Re
Lu(n)

1t

Re
Lu(n)

Note.The nonlinear terms are treated explicitly and viscous terms are treated
by the Crank–Nicolson method (AXCN method).
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This result could have been obtained from the unsplit momentum equations (2.3) with
Gφ(n+1) = Gp(n+1) + O(1t) (see Orszag, Israeli, and Deville [9]; Karniadakis, Israeli,
and Orszag [7]).

The boundary conditions on the tentative velocities depend on the method. A method of
type D has

[u∗]B = 1t

Re

[
Lu(n)

]
B + O(1t2). (6.17)

The boundary condition for a method of type P is

[u∗]B = 1t

2Re

[
Lu(n)

]
B + O(1t2). (6.18)

The boundary conditions on the two tentative velocities of a method M are

[u∗]B = 1t

2Re

[
Lu(n)

]
B + O(1t2), (6.19a)

[u∗∗]B = 1t

Re

[
Lu(n)

]
B + O(1t2). (6.19b)

7. FRACTIONAL-STEP METHODS WITH THE HOMOGENEOUS PRESSURE

BOUNDARY CONDITION

7.1. New Pressure that Satisfies the Homogeneous Neumann Boundary Condition

In constructing a numerical method, a transformation of the pressure variable that re-
duces the pressure boundary condition to the homogeneous one is of great interest if the
transformation involves only a quantity already known at the current time step. Otherwise,
evaluation of the boundary condition would require extrapolation of data. Because pressure
is linear in the Navier–Stokes equations and its time derivative is absent, one is free to sub-
tract (or add) an arbitrary scalar function from pressure but still obtains the same solutions
provided that the change is properly incorporated in the equations and the boundary condi-
tions. (The initial condition may also be altered, but this issue does not affect the account
given here.) The system matrix of a fractional-step method remains unchanged under such a
transformation, because only the right-hand sider gets modified whose values are available
at the current time step.

The procedure to carry out the transformation for a fractional-step method is to define
the new pressure8 admitting the homogeneous boundary condition and make changes to
the right-hand side vector and tentative velocity. Since the approach taken in the present
procedure is straightforward and general, existing, or prospective second-order fractional-
step methods can be transformed into the proposed form without difficulty. Once a fractional-
step method that admits the homogeneous pressure boundary condition (HPBC) is derived,
the boundary condition on the new tentative velocity can be found by following the general
rule delineated in Section 6. In fact, the boundary condition on the new tentative velocity
becomes simpler in general.

Define the new pressure8(n+1) by subtracting a scalar functionψ from the fictitious
pressureφ(n+1),

8(n+1) = φ(n+1) − ψ, (7.1)
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whereψ is regarded also as a pressure-like scalar variable. We wish to determineψ such
that the new pressure8(n+1) satisfies the homogeneous Neumann boundary condition:[

Gn8
(n+1)

]
B = 0. (7.2)

Note that the requirement (7.2) for8(n+1) is equivalent to demanding

[Gnψ ]B =
[
Gnφ

(n+1)
]

B, (7.3)

from whichψ may be determined. Sinceφ(n+1) is not available at the current time step,
however, one has to seek an alternative for it. Approximation ofφ(n+1) in terms ofφ(n)

would be the simplest alternative. Expandingφ(n+1) aboutφ(n) in time,

φ(n+1) = φ(n) +1t
∂φ(n)

∂t
+ O(1t2), (7.4)

and keeping the leading term alone for a second-order method, we see that the requirement
(7.3) forψ is approximately satisfied toO(1t) by choosing

ψ = φ(n) + O(1t). (7.5)

This choice ofψ in turn determines the new pressure-like variable

8(n+1) = 1φ(n+1) = φ(n+1) − φ(n). (7.6)

Note that the current pressure-gradient condition (6.2) is in fact equivalent to the homoge-
neous boundary condition (7.2) on8(n+1). Note also that8(n+1) is of the orderO(1t) and
is essentially a delta-form formulation of pressure (see Beam and Warming [2]; Warming
and Beam [14]). The delta-form pressure, which appeared previously in Van Kan [13] and
Dukowicz and Dvinsky [5], is conceptually equivalent. However, the purpose was to en-
hance the order of accuracy of the pressure-gradient term, a superfluous attempt (see the
discussion in Section 6) that turned out to achieve the goal when the homogeneous boundary
condition was used, and the issues pertinent to boundary conditions were not addressed.

We shall now examine how the tentative velocityu∗ and right-hand sider change due
to the change in the pressure variable and then derive the boundary condition on the new
tentative velocity. The change inu∗ andr depends on the splitting in the individual fractional-
step methods. The new methods derived from methods of type D, P, and M are denoted by
methods of type D∗, P∗, and M∗, respectively.

7.2. Fractional-Step Methods with the Homogeneous Pressure Boundary Condition

Methods of type D∗ with the homogeneous pressure boundary condition.By replacing
the pressureφ(n+1) with the new pressure8(n+1) in the method of type D (5.3), the new
fractional-step method can be written as

Au∗new= rnew, Du∗new−1tDG8(n+1) = 0, (7.7a,b)

u(n+1) +1tG8(n+1) = u∗new. (7.7c)
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Comparing the velocity-update equation (7.7c) with the original version (5.3c) of the
method, one finds that the new tentative velocity is

u∗new= u∗ −1tGφ(n). (7.8)

Likewise, the new right-hand sidernew is given by

rnew= r −1tAGφ(n) = r −1tGφ(n) + O(1t2). (7.9)

The new fractional-step method of type D∗ admitting the homogeneous pressure boundary
condition has been obtained as

Au∗ = r −1tGφ(n), Du∗ −1tDG8(n+1) = 0, (7.10a,b)

u(n+1) +1tG8(n+1) = u∗, (7.10c)

where the notationu∗new has been replaced byu∗. This method is conceptually the same as
that used by Choi and Moin [3] in a fully implicit computation of a turbulent channel flow.

Figure 3 shows schematic of the projection taking place in the new method (7.10). It is
shown that the new tentative velocity

w̃D = u∗ = u(n+1) +1tG8(n+1) = u(n+1) + O(1t2) (7.11)

is projected into the divergence-free subspace with the gradient vector1tG8(n+1) separated
out, yielding the solutionu(n+1). Comparison with the projection in the original method (see
Fig. 1) reveals that the tentative velocity is much closer,O(1t2), to the solutionu(n+1) in
the new method than in the original, where the difference is ofO(1t). This is because in

FIG. 3. Schematic of the projection in a new second-order method of type D∗ using the “delta-form” pressure
8(n+1) = φ(n+1) − φ(n): , present method; , Navier–Stokes equations. Instead of the usualwD =
u(n+1) + O(1t), a new vector fieldw̃D = wD −1tGφ(n) = u(n+1) + O(1t2) is used for the projection in this
method. The solutionu(n+1) is exactly divergence-free (within machine roundoff) and has a second-order error
u(n+1) = uNS+ O(1t2). Since the associated pressure gradient is so small,Gφ(n+1) = O(1t), the homogeneous
Neumann boundary condition, [Gφ(n+1)]B = 0, can be used for second-order computations.
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the original method the tentative velocity is obtained from Eq. (5.3) without the pressure-
gradient term, whereas in the new method the new tentative velocityu∗ is computed with
the pressure-gradient term1tGφ(n) that approximates the actual pressure gradient1tGp
to O(1t2). This salient feature of improved accuracy built in the tentative velocity is the
key to arriving at the simple boundary condition for this method as we shall see below.

Methods of type P∗ with the homogeneous pressure boundary condition.By exactly the
same procedure for the method of type D∗, the new fractional-step method of type P∗ can
be constructed. The new tentative velocity is given by

u∗new= u∗ −1tGφ(n) (7.12)

and new right-hand sidernew is

rnew= r −1tGφ(n). (7.13)

Note that the new right-hand side here is almost the same as that in the method of type
P, differing only byO(1t2). The new fractional-step method of type P∗ which admits the
homogeneous pressure boundary condition is thus obtained as

u∗ = r −1tGφ(n), (D+1tDB)u∗ −1tDG8(n+1) = 0, (7.14a,b)

Au(n+1) +1tG8(n+1) = u∗. (7.14c)

Methods of type M∗ with the homogeneous pressure boundary condition.A new
fractional-step method of type M∗ can be constructed by using the same procedure ex-
plained above. The new tentative velocities are given by

u∗new= u∗ −1tGφ(n) + O(1t2), (7.15a)

u∗∗new= u∗∗ −1tGφ(n) (7.15b)

and new right-hand sidernew is

rnew= r −1tGφ(n) + O(1t2). (7.16)

Comparison of these new variables with those of methods of type D∗ and P∗ indicates the
hybrid nature of this method. The new fractional-step method of type M∗ can be written as

u∗ = r −1tGφ(n), (D+1tDB)u∗ −1tDG8(n+1) = 0, (7.17a,b)

Au∗∗ = u∗, (7.17c)

u(n+1) +1tG8(n+1) = u∗∗. (7.17d)

7.3. Boundary Conditions on the Tentative Velocities

Since all tentative velocitiesu∗ andu∗∗ of the new methods differ respectively from those
of the corresponding original methods by−1tGφ(n) to O(1t2), the boundary conditions
differ also by the same amount. The boundary conditions for methods of type D∗, P∗, and
M∗ are summarized in Table VI. Compare the difference with those of the original methods
in Table IV.

The boundary condition onu∗ of a method of type D∗ is given by

[u∗]B = u(n+1)
B + O(1t2). (7.18)



98 LEE, OH, AND KIM

TABLE VI

Consistent Second-Order Boundary Conditions

for Fractional-Step Methods D∗, P∗, and M∗

Type Gn8
(n+1) u∗ u∗∗

D∗ 0 u(n+1) —

P∗ 0 u(n+1) −1tBu(n)or —
r −1tGφ(n)

M∗ 0 u(n+1) −1tBu(n) or u(n+1)

r −1tGφ(n)

Note.All expressions are to be evaluated by extrapolating the corre-
sponding data at the interior of the computational domain, exceptu(n+1)

for which the natural boundary condition is imposed.

The boundary condition becomes so simple because the new tentative velocityu∗ is only
O(1t2) away from the velocityu(n+1), as indicated by (7.11) and in Fig. 3. This same
boundary condition is satisfied by the second tentative velocityu∗∗ of a method of type M∗.

The boundary condition onu∗ of methods of type P∗ and M∗ is given by

[u∗]B =
[r ]B −1t

[
Gφ(n)

]
B + O(1t2), (7.19a)

u(n+1)
B −1t

[
Bu(n)

]
B + O(1t2). (7.19b)

7.4. Boundary Conditions for a Flow with a Steady Zero-Velocity Wall

The boundary conditions in the special case when the natural boundary condition is
imposed by the steady zero velocity (6.15) are considered. The time-advancement used is
the semi-implicit AXCN method (see Section 6.3). Table VII shows the summary of the
boundary conditions for the tentative velocities of methods of type D∗, P∗, and M∗.

The boundary condition (7.18) onu∗ of a method of type D∗ becomes homogeneous in
this case:

[u∗]B = 0+ O(1t2). (7.20)

Note that this result does not depend on the time-advancement scheme, whether explicit
or implicit. This condition is also satisfied byu∗∗ of a method of type M∗. The tentative

TABLE VII

Second-Order Boundary Conditions for Methods D∗, P∗,

and M∗: Flow with Steady Zero-Velocity Wall

Type Gn8
(n+1) u∗ u∗∗

D∗ 0 0 —

P∗ 0 − 1t

2Re
Lu(n) —

M∗ 0 − 1t

2Re
Lu(n) 0

Note.The nonlinear terms are treated explicitly and viscous terms are
treated by the Crank–Nicolson method (AXCN method).
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velocityu∗ of methods of type P∗ and M∗ has the boundary condition given by

[u∗]B = − 1t

2Re

[
Lu(n)

]
B + O(1t2). (7.21)

8. SUMMARY AND CONCLUDING REMARKS

Second-order fractional-step methods and boundary conditions for the incompressible
Navier–Stokes equations have been studied. The present work has been focused on (i) identi-
fication and analysis of all possible splitting methods of second-order splitting accuracy and
(ii) determination of consistent boundary conditions that yield second-order accurate solu-
tions. The account and results given here do not depend on any particular time-advancement
schemes, discretization methods for the spatial derivatives, or the geometry of the compu-
tational domain.

In order to construct splitting methods, exact and approximate factorization techniques
have been used to split the system matrix of the fully discretized Navier–Stokes equations in
the most general way. These splitting methods are always guaranteed to have the accuracy
of the time-advancement scheme, thanks to the distinguished property of approximate fac-
torization. It has been found that there are three canonical (independent and nondegenerate)
types D, P, and M of splitting methods to which all other second-order splitting schemes are
either degenerate or equivalent. Indivergence-freemethods of type D, the pressure-gradient
term of the Navier–Stokes equations is approximated toO(1t2); and inpressure-accurate
methods of type P, the divergence operator (or continuity equation) is approximated to
O(1t2). Both operators are approximated in a method of type M, which can be regarded
as mixture (or hybrid) of methods of type D and P.

The discrete projection that takes place in the canonical methods has been analyzed in
the light of Chorin’s decomposition idea. In a method of type D, the velocity fieldu(n+1)

is exactly divergence-free and the “fictitious” pressureφ(n+1) differs from the “actual”
pressurep(n+1) by O(1t), whereas the velocity fieldu(n+1) of a method of type P is ap-
proximately divergence-free∇ · u(n+1) = O(1t2), but the fictitious pressure is identical to
the actual pressure. Therefore, a method of type D is recommended for computations in
which the incompressibility of the velocity field is required or preferred to pressure, while
a method of type P is better suited to the cases when highly accurate pressure has priority
over the incompressibility requirement or the actual pressure should be computed during
time advancement.

A systematic procedure to find the consistent boundary conditions on the tentative velocity
u∗ and pressureφ(n+1) has been developed, which consists of approximation of the split
equations to the splitting accuracy and the boundary limit of the result. The approximation
involves conversion of implicit terms to explicit equivalents and the boundary limit is carried
out by extrapolation of known data in practice. The results are summarized in Table IV. The
pressure boundary condition suffices to be first-order accurate and attempts with “improved”
boundary conditions do not necessarily lead to improvement in theorderof accuracy of the
solutions. It has been found that the current pressure-gradient boundary condition does not
depend on the type of fractional-step methods and thus can be regarded as being universal:
[Gnφ

(n+1)]B = [Gnφ
(n)]B. The alternative expression for the pressure boundary condition

turned out to be also independent of the type of fractional-step methods. It has been shown
that the boundary condition on the tentative velocityu∗ of the canonical methods can be
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expressed in terms of the natural boundary conditionu(n+1)
B and derivatives of quantities

available at the current time step (to be evaluated by extrapolation).
Second-order fractional-step methods D∗,P∗, and M∗ that admit the homogeneous pres-

sure boundary condition [Gn8
(n+1)]B = 0 have been derived by using a transformation

which involves the delta-form pressure8(n+1) = φ(n+1) − φ(n). The system matrices of the
methods remain the same under the transformation but the tentative velocity is modified
by 1tGφ(n). The boundary conditions obtained for the new methods are summarized in
Table VI. In the new method of type D∗, the boundary condition on the tentative velocity
u∗ becomes [u∗]B = u(n+1)

B , a great simplification due to the improved accuracy built into
the new tentative velocityu∗ = u(n+1) + O(1t2).
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