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An account of second-order fractional-step methods and boundary conditions for
the incompressible Navier—Stokes equations is presented. The goals of the work were
(i) identification and analysis of all possible splitting methods of second-order split-
ting accuracy, and (ii) determination of consistent boundary conditions that yield
second-order-accurate solutions. Exact and approximate block-factorization tech-
niques were used to construct second-order splitting methods. It has been found that
only three canonical types (D, P, and M) of splitting methods are nondegenerate,
and all other second-order splitting schemes are either degenerate or equivalent to
them. Investigation of the properties of the canonical methods indicates that a method
of type D is recommended for computations in which zero divergence is preferred,
while a method of type P is better suited to cases where highly accurate pressure
is more desirable. The consistent boundary conditions on the tentative velocity and
pressure have been determined by a procedure that consists of approximation of the
split equations and the boundary limit of the result. It has been found that the pres-
sure boundary condition is independent of the type of fractional-step methods. The
consistent boundary conditions on the tentative velocity were determined in terms of
the natural boundary condition and derivatives of quantities available at the current
time step (to be evaluated by extrapolation). Second-order fractional-step methods
that admit the zero-pressure-gradient boundary condition have been derived by using
a transformation that involves the “delta form” pressure. The boundary condition on
the new tentative velocity becomes greatly simplified due to improved accuracy built
into the transformation. @ 2001 Academic Press
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1. INTRODUCTION

This paper is concerned with fractional-step methods and boundary conditions for
Navier—Stokes equations that describe the three-dimensional, unsteady incompressible
in primitive variables. Numerical solution of the discretized Navier—Stokes equations is
pensive in general, because the resulting algebraic equations for the velocity component
pressure are coupled and hence form a very large system. This difficulty can be alleviate
employing a fractional-step method in which the coupled system is splitinto decoupled ¢
tems of much smaller size that can be solved with much less computational cost [4, 6, 11,

There are two important issues that need to be properly accounted for in the cons
tion and implementation of a fractional-step method: (i) splitting (or decoupling) of t
equations (or operators); and (ii) boundary conditions associated with the tentative velc
and pressure. These issues have been subject to controversy in the literature primaril
cause they are not independent of each other and involve implementation details su
discretization schemes (both time and space) and configuration of computational don
The accuracy of the solutions obtained by a fractional-step method depends on the ¢
racy of the time-advancement method, splitting method, and boundary conditions, wt
are referred to hereinafter as ttime accuracysplitting accuracy andaccuracy of the
boundary conditiongespectively. The same accuracy of splitting and boundary conditio
for a fractional-step method is guaranteed only if theyamesistentvith the discretized
Navier—Stokes equations and natural boundary conditions to the order of accuracy o
time-advancement method.

The purpose of the present work is twofold: (i) to identify and analyze all possible sp
ting methods of second-order splitting accuracy; and (ii) to determine consistent boun
conditions that yield second-order-accurate solutions. The account given here is stra
forward and the results do not depend on a particular discretization scheme for time
spatial derivatives or the geometry of the computational domain.

It was shown by the recent studies of Dukowicz and Dvinsky [5] and Perot [10] that sp
ting in a fractional-step method can be regarded as approximate block-factorization of
discretized equations. The splitting accuracy of equations obtainad bgcsplitting may
or may not be of the same order of time accuracy. However, splitting based on approxir
factorization always guarantees that the resulting system of equatiomssistentvith the
unsplit equations to the order of accuracy of the time-advancement method; i.e., the spli
accuracy is of the same order of the time accuracy. This distinguished feature of approxir
factorization is used to construct fractional-step methods of second-order accuracy in
work. The procedure consists of two stages: exact and approximate block-factorizati
All possible splittings of the discretized Navier—Stokes equations have been derivec
exact block-factorization (developed in Section 3). The results have been approxim:
to second-order accuracy and analyzed to determine three non-degenerate fractiona
methods referred to as tkanonical methodsf type D, P, and M, respectively (see Section
4). Notice that all other fractional-step methods developed on the basis of approximate
torization are either degenerate or equivalent to one of the canonical methods. The pr
account can be considered as a generalization of the view held in Dukowicz and Dvir
[5] and Perot [10].

The solutions to a canonical fractional-step method of second-order accuracy are
guaranteed to be second-order accurate, if the boundary conditions for the split equa
are not specified properly. The boundary conditions on the nonphysical quantities in
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split equations cannot be specifiadoriori, and hence the crux of the determination o
the boundary conditions is to express them in terms of known quantities available at
current time step. Itis desired to have boundary conditions thaiergstentvith the split
equations of the fractional-step methods. By consistency of boundary conditions, itis m
that the boundary conditions satisfy the split equations at the boundary to the order o
splitting accuracy or equivalently the time accuracy. The consistent boundary conditions
be identified by the limiting process of the equations obtained by consistent approxima
(see Section 6). It has been found that the procedure developed in this work can be us
a powerful tool in finding the consistent boundary condition for a fractional-step metho

There has been a certain degree of ambiguity and controversy in how the boun
conditions on the pressure are implemented in practice (see Section 6). In particular, a
cation of the homogeneous Neumann boundary condition on the pressure leads to re
of first-order accuracy only. Second-order fractional-step methods that admit the ho
geneous Neumann boundary condition have been developed by transforming the sol
variables and right-hand sides of the equations of the canonical methods (see Sectic
It is shown that the “delta-form” pressure, which appeared previously in Van Kan [13] &
Dukowicz and Dvinsky [5], can in fact be derived from the transformation. Introductic
of the delta-form pressure yields improvement of the accuracy of the tentative velocit
O(At?), leading to the extremely simple boundary condition on the tentative velocity. T
role played by the delta-form pressure in the projection into the divergence-free subs
is examined here in the light of Chorin’s decomposition idea [4].

This paper is organized as follows. The discretized formulation of the Navier—Stol
equations is discussed in Section 2. In Section 3, a procedure by which exact bl
factorization of the discretized Navier—Stokes equations is carried out is explained
Section 4, second-order splitting methods are constructed by using approximate bl
factorization. The results are analyzed to identify three canonical second-order methoc
Section 5, characteristics of the canonical methods are investigated, including splitting
projection. Consistent boundary conditions on the tentative velocity and pressure are de
in general form and the case of the steady zero-velocity boundary is discussed in Secti
In Section 7, the canonical methods are transformed such that the homogeneous Neu
boundary conditions are satisfied by the pressure, and the consistent boundary cond
for the new fractional-step methods are discussed. Concluding remarks are present
Section 8.

2. DISCRETIZED FORMULATION OF THE NAVIER-STOKES EQUATIONS

The incompressible Navier—Stokes equations, which consist of the momentum equa
and continuity equation, can be written as

au 1
— 4+ U-V)u=—-Vp+ —Va, 2.1a
5 TW-V) P+ g (2.1a)

V.u=0, (2.1b)

whereu(x, t) andp(x, t) are the velocity vector and pressure, respectively. The momentt
and continuity equations have been made dimensionless by an appropriate reference ve
and length scale and Re denotes the Reynolds number of the flow under consideration. |
work, the initial velocity field is assumed to be divergence-free. The boundary conditic
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on the velocity components are usually specified on the boundagy at
ug(t) = U(xg, 1). (2.2)

Since it is difficult to know the boundary condition on the pressypeori in most practical
computations, itisa common practice to derive them from appropriate considerations (ra
than specify them).

The major difficulty in obtaining atime-accurate numerical solution for anincompressit
flow arises from the fact that the time derivative does not appear explicitly in the contint
equation (2.1b). The continuity equation plays a role of kinematic constraint on the velo
vector field via the implicit coupling between the pressure and velocity fields. Since
Navier—Stokes equations are a coupled system, it is important to develop simplified
efficiently solvable numerical approximations. This can be achieved by decoupling
pressure computation from that of the velocity, thereby reducing the problem to a sys
of separately-solvable equations.

When the Navier—Stokes equations (2.1) are discretized only in time by appropr
second-order time-advancement methods, the semi-discrete equations can be written

Au(n+l) + AtG p(rH'l) =r, (233)
Du™Dd — 0, (2.3b)

whereA, G = grad andD = div are thecontinuoudifferential operators and the right-hand
side vector contains all the quantities known at the current time steplhe solutions
u™D and p™*D of the semidiscrete equations (2.3) are regarded as functions of the s
variable. The differential operatdr of a second-order method can be written as

A=1- AtB, (2.4)

regardless of the choice of the time-advancement scheme(s). If the second-order Cr
Nicolson method is used in a semi-implicit scheme, the differential opeBatakes the
form of

1
B=_—L, 25
2Re (2:5)
wherelL = V? represents the Laplacian operator. In the case of a fully explicit schen
B =0 andA = 1. The natural boundary condition for the discretized equations can

expressed as
ug™™ = u(xg, thr1). (2.6)

Equations in semidiscrete form are useful in analyzing a fractional-step method in gen
and in finding its boundary conditions in particular. The consistent boundary conditions
are independent of the discretization scheme for spatial derivatives can be found on
semidiscrete equations are considered.

When the Navier—Stokes equations (2.1) are fully discretized by appropriate discret
tion schemes for spatial derivatives and second-order methods for time advancemen
resulting system of algebraic equations can be written in matrix—vector form as
u+Db r
o=+

A AtG
D O
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where the solution vector consists of velocity componefits? and pressurg™+? at the
interior gridpoints. The block matrix of algebraic equations (2.7) denoted by

o (2.8)

s — {A AtG}
shall be referred to as theystem matrikiereinafter. It has three nonzero submatrices re
resenting discretization of the respective spatial derivatives.

The submatrixA is banded in most cases because it is desirable to treat viscous te
by an implicit method in order to avoid a highly stiff system; when all the terms in t
momentum equations are treated by an explicit schérbecomes diagonal. The submatrix
G represents the effect of the pressure force Bndenotes the discretized divergence
operator in the continuity equation. These submatrices, andD are discrete equivalents
of the differential operatord, G, andDD, respectively. The first term on the right-hand
side represents all the quantities in the interior of the domain known at the current t
stept,. Theboundary termd andc, are the discretized equivalent of the natural boundal
conditions specified by the problem formulation.

The submatriA represents advancement of the momentum equations (2.7) in time
can be written as

A=1— AtB, (2.9)

regardless of the particular choice of the time-advancement scheme(s) usedA\dken
the form ofM — AtB (e.g., in finite-element discretizatiol, represents the mass matrix),
it can always be transformed into the form (2.9). If a fully-explicit scheme is (Bed0
andA becomesA = |, wherel is the identity matrix. In a semi-implicit scheme where the
second-order Crank—Nicolson method is used for the viscous tBriagiven by

B=_——L (2.10)

whereL denotes the discrete Laplace operator; and in the case of a fully implicit sche
with the second-order Crank—Nicolson method for the viscous and nonlinear terms, it t
the form of

1 1
B=—L+=N 211
2Re + 27 ( )
whereN represents the discrete operator involving implicit treatment of the nonlinear teri
A typical fractional-step method that splits the original equations (2.7) into two parts c

be written in approximate-factorization form as

A 0 u* r by
o —awllgn] =lo] 2] 22
| AtG]|u™D u* b,
[0 | ] g | = [«p”‘*”} * M’ (2:420)
whereu* is called thetentative velocityand¢ ™tV is called thefictitious pressureThese
guantities introduced due to the splitting are not considered to be physical. The value

the intermediate boundary ternts, b,, c;, andc,, of the split parts are to be determined
in order to solve the split systems of equations (2.12). Properties of this method and
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boundary conditions are discussed in detail in Section 5. The solution procedure con
of the three basic operations: (i) advancement of velocity by nonlinear and viscous te
in (2.12a); (ii) computation of the pressupeby solving the Poisson equation in (2.12a);
and (iii) update of velocity with the computed pressure (or pressure correction) in (2.12
Note that the first two operations are represented by the block-lower-triangular matrix
the velocity update is represented by the block-upper-triangular matrix. It can be ea
shown that the system matrix of equations assembled from the split equations is in fe
second-order approximation to the system mdikig of the original equations (2.7).

One of the objectives of the present work igieriveall possible second-order splitting
methods based on approximate factorization of the system niiaigixto achieve the goal, a
systematic procedure is employed in two stages: exact block-factorization and approxir
block-factorization. Exact block-factorization of the system matrix yields 19 independs
two-, three-, and four-part factorizations. Splitting methods of second-order accuracy
obtained by approximating the results@gAt?) and discarding those which cannot be im-
plemented. Examination of the remaining legitimate methods reveals that only three split
methods are considered to be independent: two two-part methods and one three-part me

3. EXACT BLOCK-FACTORIZATION OF THE SYSTEM MATRIX

3.1. Method of Exact Block-Factorization

Exact factorization is the crucial step toward constructing fractional-step methods 1
have the specified splitting accuracy. The most general block-factorization of the sys
matrix I'ys of the discretized Navier—Stokes equations (2.7) involves the following fo
factors: a unit block-lower-triangular matrix unit block-upper-triangular matril, and
two one-sided block-diagonal matricBg and D, given by

1 O li b a 0 I, 0
L_lc |2]’ U_[o |2]’ Dl_[o |J’ Dz_{o d} 3.1)

The submatricek andl, are the identity matrices whose size depends on the configurati
and size of the computational grid. Note that the four factors in (3.1) are the most b:
units and hence further factorization of any units yields redundant results. Hereinal
the individual block matrices obtained by exact factorization shall be referred to as
factorization modulesr modulesn short. The lower-left block in a lower-triangular matrix
L involves the divergence operation on velocity and the upper-right Bdokan upper-
triangular matrixU involves the velocity update. Because the velocity update cannot
carried out prior to the computation of the pressure in any fractional-step methods, a loy
triangular matrix must always precede an upper-triangular matrix. Hence, an implement
splitting method consists of a factorizationlof) type only, e.g.L. D;D,U, L D,U D4, and
D;LD,U (but notU D1 D,L). This is certainly true of the example shown in (2.12).

In order for the block-factorization to be meaningful, the four submatacesc, andd
must satisfy the nontriviality condition:

a#0, b#£0, c#0, d=#£0. (3.2)

The block-diagonal submatricesandd in the block-diagonal moduleB; and D, are
given by

a=A, d=—AtDA™!G, (3.3)
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respectively. However, the submatridesndc in the block-triangular modules take different
forms, depending on where they are located in individual factorizations (see below).

It has been found that there are 24 possible combinations of four-part factorizatic
Among the 24 combinations, 12 do not satisfy the nontriviality condition (3.2) and therefi
these trivial combinations must be discarded. The remaining 12 factorizations are

LD;DU, LD,D;U, LDiUD,;, LDyUDy,
My -Mp-M3-my =< LUD;D,;, LUD,D;, D;LUD,, D,LUD;, (3.4)
D;LD;U, D,;LD;U, D;iD,LU, D,;D;LU.

For the 12 remaining combinations, the submatrizaadc can take one of the 4 respective
forms:

AtG 2 occurrences D 2 occurrences

b— AtA~1G 6 occurrences c— DA! 6 occurrences (3.5)
-D? 2 occurrences —At™1G™? 2 occurrences '
—AD™! 2 occurrences —At~1G~'A 2 occurrences

Each of the 12 combinations (3.4) can be used to form exact factorizations of the sys
matrix I'ys into four, three, and two parts, respectively. Note that only the subnratigx
square and can be inverted; the identity submatrices are trivial. Because the subrbDatri
andG representing the divergence and gradient operators, respectively, cannot be inve
those factorizations involving inverses of the divergence or gradient operators are disca
When the system matriRys is factored into three or two parts, submatrices having invers
of the divergence or gradient operators may or may not disappear. The procedure and re
of the four-, three-, and two-part exact block-factorizations are summarized below.

3.2. Results of Exact Block-Factorization

Exact block-factorizations into four partsWhen the system matrikys is factored into
four parts, it can be written as

EPESEYEY = my - My - Mz - My, (3.6)

whereEgS) denotes therth factor in ans-part factorization andh, denotes theith module
that can be selected from one of the 12 combinationsin (3.4). Discarding 8 factorizations
involve the inverse of the divergence or gradient operator, we find 4 legitimate factorizati

with four parts:
A O[] O]l 0 | AtA1G
10 I]|D I][o —AtDA'G]|O I

T ol 0 Hl Ate} {A o]

DA™! 1]|l0 —AtDA!G][0 | ||O0 I}
E(4)E(4)E(4)E(4) — L E 3.7
1772 =3 4 T Ol[A oMI 0 HI AtAlG] (37)

DA™Y ][0 I]|l0 —AtDAT!G]|O | ’

Tl ol 0 HA OHI AtA‘lG]

DA™Y ][0 —AtDA7!GJ[O I]]|O | :
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nto three partsA three-part block-factorization of the sys-

tem matrixI'ys can be constructed by combining any two adjacent factorization modu
from a combination in (3.4). For each of the 12 combinations, there are three ways to f
three-part exact factorizations,

(©)
El

where

My - M2 - M3g,

EPED = { My - Myz- My, 3.8
2 3
r/ﬁlZ : r/ﬁ3 . r/ﬁ41
ik
Wiy = [[ ™ (3.9)

j=i1

denotes a factor consistinglofidjacent modules (with consecutive indicgs . . , ix) from

one of the 12 possible choice

s in (3.4); for instamg; = M,Ms. Because there are three

ways to form a three-part factorization, a total of 36 combinations of three-part factorizati
are possible. Among the 36 possibilities, 9 factorizations contain submatrices invbiving

and 9 involveG1, leaving 18

legitimate three-part factorizations. Among the remainir

18 factorizations, only 9 are independent:

©o» UX» OX»

EYEYEY =

Exact block factorizations i
factorizations for each of the

i
D
rl
0
K
D
0
o
0
—AtDATIG

Ik

0
—AtDATIG

0
—AtDA7IG
0
—AtDAT!G

i

0
|

AtA71G
|

AtA1G
|

J

I
0

b ™

(3.10)

DA!
|
DA!
|
DA !
|
DA !

|
|

o “5°]
AtAIG
—AtDAT'G
0 A AtG
—AtDAlGMO I}’
HI AtG} [A O}
o I Jlo I}
AtG A O
—AtDAlGMO I}’
0 MA OHI AtA~1G
0 1|0 I
Ol[A 0 | AtA7IG
|Ho —AtDA_lGHO I
O]fA O]]l AtA~G
|H0 |MO —AtDA—le]
nto two partsThere are three ways to form two-part exact
12 combinations in (3.4):
m1"’/7\1234,

EPE? = { M- Maa, (3.11)

My23 - Ma.
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Thirty-six combinations of two-part factorizations can be obtained in this manner, am
which 26 combinations are legitimate since 5 factorizations contain submatrices involv
D! and the other 5 involv&s—t. Among the 26 legitimate factorizations, only 6 are
independent. The 6 independent block-factorizations with two parts are given by

[A 0 | AtA71G
D —AtDA_lGMO I }
A o]l AtAlG

D |HO —AtDAlG}

A O]l AtA1G

o il ")

EPED = (3.12)

[l 0 HA AtG}
DA™ —AtDA!GJ[O | |’
| OHA AtG }
DA™Y 1]l0 —AtDA'G)’
Mo AtGI[A O
DA™Y 0 |0 I}

4. CONSTRUCTION OF SECOND-ORDER FRACTIONAL-STEP METHODS

4.1. Method of Approximate Block-Factorization

The exact block-factorizations (3.7), (3.10), and (3.12) of the system nig{gxontain
thethree terms AtDA™'G, AtA~1G, andDA ™, which involve the inverse of the submatrix
A. Because it often takes a tremendous amount of computer time and cost to obtain th
verseA~! numerically, itis desirable to approximate the three terms DA™1G, AtA~1G,
andDA ! instead, except in the case of a fully explicit method. The purpose is to obtain
proximations of the three terms to the accuracy of the time-advancement method, the
yielding consistent splitting methods. We first expand the invérseabout! for small
values ofAt « 1:

A*1=I+AtB+AtZBZ+...=I+ZAthj. (4.1)
j=1

When a method ofth-order accuracy is used, the approximations to the three terms
given by

—AtDA™IG = —AtD(I + - - - + At"IB"HG + O(At"HY), (4.2a)
AtA7TIG = At + -+ AtTTIBTHG + O(At™ Y, (4.2b)
DA™ =D(+ .-+ At'B") + O(At' ). (4.2c)

Since fractional-step methods having second-order accuracy are considered in this \
the factored modules are approximated to second ord&t ffwith r = 2).

The next steps toward construction of fractional-step methods involve elimination
the factorizations that cannot be implemented in practice and identification of those
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are either degenerate to schemes with fewer factored parts or equivalent to other sch
with the same number of factored parts. It has been found that only three factorization:
nondegenerate. Others are either degenerate or equivalent to one of these three or else
be implemented. By “degeneracy,” it is meant that when trivial operations in a method
eliminated (e.qg., those involving the trivial identity matrices), the method carries out exac
the same operations in another method with fewer parts. By “equivalence,” it is meant
the methods implement the identical operations in an identical sequence. Fractional-
methods constructed from these nondegenerate factorizations are referred taastieal
fractional-step methodsereinafter.

4.2. Second-Order Fractional-Step Methods

Two-part fractional-step methods Substituting the approximations (4.2) with= 2 into
the two-part exact factorizations (3.12) yields fractional-step methods with two parts, wt
can be written as

My - M234,

2@ = =

7Ty = M1z - Mag, (4.3)
M123- My,

wherel'is theath part of a splitting method with parts and
I?]ilmik = milmik + O(Atz) (4.4)

represents the second-order approximatiomof;, with an errorO(At?); e.g.,M1, is the
second-order approximation fy,. Note thatm;, ., # [};, M; in general. The result is
summarized in Table I.

The six fractional-step methods can be grouped into two types according to which oper
in the system matrid'ys of the Navier—Stokes equations (2.7) remains the same in t
approximated system matrR(lz)I‘gz) of the two-part methods. The approximated syster

TABLE |
Second-Order Factorization of System MatrixI'ys into Two Parts
Code Factorizatiod?T'Y Degen/equiv
D2A {A 0 MI AtG} Nondegenerate
D -—AtDGJL0 |
A O]l AtG
D2B {D IMO _AtDG] < D2A
A O]l AtG .
D2C [0 IMD 0 } Unimplementable
| 0 A AtG
P2A N
[D + AtDB —AtDGHO | ] ondegenerate
P2B [ ! O} [A AtG } < P2A
D+ AtDB 1]|0 —AtDG
| AtGI[A O )
P2C [D+ AIDB 0 HO J Unimplementable

Note.I'"® is theath part of a splitting method with parts; <, equivalent to.
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matrix I? T of D2A, D2B and D2C is given by

A AtG — At?BG

F(Z)F(Z) —
1 2 D 0

=TIp. (4.5)
Comparison with the system matiis indicates that the pressure-gradient operatb

of I'ys has been approximated WtAG = AtG — At?BG = AtG + O(At?), but the
divergence operatdd remains unchanged. These methods are said to be of type D (
“divergence”). The system matrix of P2A and P2B is given by

A AtG

ro1® _ -
1 =2 D — At?DB?> At2DBG

Lp, (4.6)

from which one finds that the divergence operddoof the original system matriX'ys
has been approximated By— At2DB? = D + O(At?) (or more properly the continuity
equation has been approximated), while the pressure-gradient term remains the same
system matrix of D2C is slightly different.) These methods shall be referred to as meth
of type P (for “pressure”).

Not all the algorithms are implementable in practice, however. For instance, in the c
of D2C, the pressur@™*V is not computed anywhere in the method and hence the veloc
u™D cannot be updated, although the scheme can be “interpreted” as working like D
It can be shown that P2C also cannot be implemented. All other methods are equivz
to either D2A or P2A (see Table I). Fractional-step methods D2A and P2A are called
canonical methods of type D and P, respectively.

Three-part fractional-step methodsFractional-step methods with three parts,

8 (33 My - M2 - M3y,

[©FIEIRTE)] = = =

Fl FZ F3 = < M1 - M3 My, (47)
M1 - M3 - My,

can be obtained by substituting the approximations (4.2) mitt? into the corresponding
exact factorizations (3.10). Table Il lists the resulting nine methods.

The nine methods can be grouped into three types according to the system matrix o
methods. The system matrix of D3A, D3B, and D3C is given by

A AtG — At?BG
rPTPrd = [D 0 } = T'p. (4.8)
P3A, P3B, and P3C have the system matrix
A AtG
rProry = { ] =Tp, 4.9
17273 7 Ip_ At?DB? At?DBG) (4-9)

and M3A, M3B, and M3C have

A AtG — At?BG

reTeT® _
17273 D — At2DB?  —At3DB3G

=Ty (4.10)

The system matrix'y approximates both the pressure-gradient operator and diverge
operator (or the continuity equation) @(At?).
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TABLE Il
Second-Order Factorization of System MatrixT'ys into Three Parts

Code Factorizatio T T Degen/equiv
TN s E—
oas o o —swallo 1) ~ o2
D3C {A OMI OMI AtG } . D2A
0 1J[D I1]|0 —AtDG
PA  |oinos to —awello 1] =P
P8 |oinos —aoelo 1ot PP
pac [o+ atve 1o —atoe)lo 1 ~FeA
M3A _D+IAtDB —A(t)DGMg (I)MCI) A:G: Nondegenerate
M2 [0 e o —awello 1) @M
ac [o+awwe 1o tllo —atoa] > WA

Note.T'® is theath part of a splitting method witk parts;=>, degenerate to;>,
degenerate to by interpretatios;, equivalent to.

Degeneracy and equivalence of the methods have been examined. As shown in Talk
D3A, D3B, and D3C are either degenerate or interpreted as being degenerate to the ca
calmethod D2A; P3A, P3B, and P3C are degenerate to the canonical method P2A; and |
and M3C are equivalent to the three-part method M3A. Method M3A is nondegenerate
has the system matriRy;, which approximates both the pressure-gradient and diverger
operators of the original system matfixs. It is called a canonical method of type M (after
“mixture”).

Four-part fractional-step methods.Substituting the approximations (4.2) with= 2
into the four-part exact factorizations (3.7) yields fractional-step methods with four par
rrdrdr = m; - m, - Ms - M, (4.11)
The four schemes are shown in Table Ill. Method D4 is of type D and degenerates to

canonical method D2A; P4 of type P degenerates to P2A; and M4A and M4B of type
degenerate to M3A. There are no nondegenerate fractional-methods that have four pe

5. ANALYSIS OF THE CANONICAL FRACTIONAL-STEP METHODS

The three canonical methods of type D, P, and M obtained by exact and approxin
factorization can be written respectively as
r b
|- [e] +[2]

u+D

{A 0 AtG] (5.1a)

I
> —aoc)lo |

¢(n+l)
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TABLE 1l
Second-Order Factorization of System MatrixI'ys into Four Parts

Code Factorizatio"T{" T{"T'{" Degen/equiv
D4 |:A Oi||:| Oi||:| 0 Ml AtG:| — D2A
0 I1JID 1]l0 —AtDG]|0 |
pa { | OH:I 0 :Hl AtGiH:A 0:| — P2A
D+ AtDB ][0 —AtDG]|0 | 0 1
MAA { | 0:| [A O:HI 0 ]|:| AtG} - M3A
D+ AtDB 1] [0 [][0 —AtDGJ[0 |
| o111 0 A O]l AtG
M4B M3A
{D#—AtDB J[o —AtDG} [o J[o | } -

Note.I'® is theath part of a splitting method witk parts;=, degenerate to.

| 0 ][A AtG]ju"? r1 b
[D+AtDB —AtDGHO | ] ¢(n+1)‘| = [O]+[c]’ (5.1b)

I 0 J[A O][l AtG]|u®™d r b
[D+AtDB —AtDGHo 'HO | ] d,mw]:[o]Jr[c]. (5.1c)

The final form of a fractional-step method is obtained when the expression in the assen
form (5.1) is split into the corresponding number of equations. Two-part methods of typ:
and P have one tentative velocity, while a three-part method of type M has two tentative
velocitiesu* andu**,

The system matrices of the canonical methods are given by

[A  AtG — At?BG
FD = _D 0 :|, (528.)
ro—| A A6 } (5.2b)
P~ |D - At?DB? At?DBG]’ '
_ [ A AtG — At?BG (5.20
M~ ID— At2DB?  —At3DB%G | '

respectively. Inspection of the system matrices reveals that the preg8uteis always
first-order accurate in time, independent of the time-advancement scheme used [10].
observation should be properly interpreted. Note that the accuracy of terms involving
pressure in the momentum and Poisson equations is always second order, since the pr
¢V always appears withit, e.g.,AtG¢p™V and—AtDG¢™V . Therefore, the accu-
racy of all the split and assembled equations of the canonical methods are second c
an undoubtedly powerful guarantee provided by approximate factorization. The split
accuracy of fractional-step methods constructeddjnocsplitting may or may not be the
same as the time accuracy.

The splitting structure of the canonical methods is analyzed in what follows with
particular emphasis placed on how the projection is approximated in a method. We ¢
consider only fully or semi-implicit time-advancement methods Be4 0), because if all
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the terms in the momentum equations are treated explicitly B.e=,0 andA = 1), there

is no distinction among the three methods. When fully or semi-implicit time-advancem:
methods are used, the submatkixepresents the time-advancement of the viscous and/
nonlinear terms.

5.1. Canonical Fractional-Step Methods of Type D

The fractional-step method of type D has two split parts and can be written in se
discrete form as

Au* =r, Du* — AtDG¢p™Y =0, (5.3a,b)

U™ 4 AtGp ™Y = u*, (5.3c)

The “momentum equations” (5.3a) are advanced in time without the pressure-gradient
to yield the tentative velocity*. The fictitious pressurg¢™? is computed via the Poisson
equation (5.3b) and the velocity"™™ is updated in (5.3c) by adding the gradient of the
computed pressure fielf"tY. Combining the two equations (5.3b) and (5.3c) yields th
continuity equation for the velocity™+?,

DUt — ]D)(u* _ AIG¢(”+1)) =0, (5.4)

from which one finds that the updated velocity field*V is divergence-free; i.e., it is
identical to the original continuity equation (2.3b).
Combining the equations (5.3a) and (5.3c) yields the assembled equation

Au™D L AtAGH™Y =, (5.5)

Comparison with the corresponding Navier—Stokes equations (2.3a) shows that the fictit
pressurep = ¢V s related to the “actual” pressupe= p™*+? by

Gp=AG¢ = G¢p — AtBGo, (5.6)
or equivalently,
G¢ = Gp+ AtBGp + O(At?). (5.7)

The Poisson equation (5.4) states that the divergence-free vectarfieltlis obtained
from the tentative velocity fielvp = u* by projecting out the gradient fieldtG¢. The
projection taking place in a second-order method of type D is compared with the “exact”
jection in the semi-discrete Navier—Stokes equations (2.3) in Fig. 1. This can be interpr
as a second-order-accurate version of the exact projection (or Helmholtz decomposi
in the Navier—Stokes equations proposed earlier by Chorin [4] and Temam [11, 12].°
exact projection in the Navier—Stokes equations (2.3) can be represented by

Duns = D(wns — AtGp™Y) =0, (5.8)
whereuyns denotes the solution of the Navier—Stokes equations and

Wns =T + (1 — A)upns. (59)
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Gradient
vector field

Divergence-free
vector field

FIG. 1. Comparison of the projection in a second-order method of type D with the exact projection
the Navier—Stokes equation—=, second-order method of type [—-—>, Navier-Stokes equations. The
solutionu®™+Y of this method is exactly divergence-free (within machine roundoff) and has a second-order e
u™d = uys + O(At?). The associated pressure gradiént is related to the actual pressure gradi€m by
G¢ = Gp+ AtBGp + O(At?).

The difference betweenp andwys is given by
Wp — Wns = AZBGp™Y + O(At?), (5.10)

indicating that the velocity field™Y has a second-order err@r(At?).

The actual pressung"+? which is not computed during time advancement in this methc
may be obtained by a separate calculation (5.6). Because the velocityfieltlis exactly
divergence-free in a method of type D, this “divergence-free” method is recommendec
computations in which incompressibility of the velocity field is of central interest and/or
the computation of the actual pressyrés not needed during time advancement.

5.2. Canonical Fractional-Step Methods of Type P
The fractional-step method of type P that has two split parts can be written as

u*=r, D(1+ AtB)U* — AtDGyp™Y =0, (5.11a,b)
Au™D 4 AtGp™D = u*. (5.11c)

In this method, the “momentum equations” (5.11a) are advanced by an explicit met
without the pressure-gradient term and the implicit terms are advanced in the pres:
correction equation (5.11c). Combining these two equations yields the assembled eque

AU 4 AtGH™D =t (5.12)

Comparison with the Navier—Stokes equations (2.3a) reveals that the pressure gradi
identical to the “actual” pressure gradient in this method:

Gop™Y = Gp™tY. (5.13)
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Gradient
vector field

Divergence-free
vector field

FIG. 2. Comparison of the projection in a second-order method of type P with the exact projection in
Navier-Stokes equation—#, second-order method of type —-—>, Navier-Stokes equations. The solution
u™b obtained by this method is approximately divergence-fre® tat?) and has a second-order erut? =
uns + O(At?). The associated pressure gradiButis identical to the actual pressure gradiént.

The Poisson equation (5.11b) by which the fictitious presgdte? is computed can
be regarded as representing the projection of the method (see Fig. 2 for a schematic «
projection). Here,

wp = U* + AtBuU* (5.14)

is projected into the solenoidal subspace with the pressure grasti@w ™V separated
out into the gradient field. Substituting the pressure-correction equation (5.11c) into
Poisson equation (5.11b) yields

D(1 — At?BHU™Y + At?DBGo ™Y =0, (5.15)

which indicates that the velocity field"*? obtained by this method is only approximately
divergence-free; the divergence has@mt?) error, unlesDBG¢™D = DB2u™D js
satisfied everywhere in the computational domain. The difference betweandwys is

Wp — Wys = —At?(B?uns — Gp™*P), (5.16)

where the relation (5.13) betwe&p "+ andG p™*+Y has been used.

Despite that the velocity field™* is only approximately divergence-free, a methoc
of type P is distinguished by its capability of the “exact” pressure (5.13). Hence, tl
“pressure-accurate” method is recommended when accurate pressure is preferred t
incompressibility of the velocity field or the actual pressprehould be computed during
time advancement.
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5.3. Canonical Fractional-Step Methods of Type M

In fractional-step methods of type M, the pressure gradient opetateand divergence
operatorD (or continuity equation) are approximated respectivelyMt@ — At>BG and
D — At?DB in the system matrix. Writing the three-part method in semidiscrete form, \
have

u*=r, D+ AtB)U* — AtDGe™D =0, (5.17a,b)
Au** = u¥, (5.17¢)
U™ 4 AtGe ™Y = u. (5.17d)

This method can be considered as a mixture (or hybrid) of methods of type D an
Assembling the equations (5.17a,c,d) yields

Au(m—l) + AtAG(b(rH_l) =r, (518)

which is the same as the assembled equation (5.5) for a method of type D. The fictit
pressurep = ¢ of this method is related to the “actual” presspre= p™*V by

G¢ = Go + AtBGp + O(At?). (5.19)

The “momentum” and Poisson equations (5.17a,b) of this method are identical to tf
(5.11a,b) of a type-P method. The fictitious presspfe™? is computed by solving the
Poisson equation (5.17b), which represents the projection of

wyp = U* 4+ AtBu* (5.20)

into the solenoidal subspace separating the pressure-gradiemtfigi"+V . Substituting
the implicit equation (5.17c) and the velocity-update equation (5.17d) into the Pois:
equation (5.17b) yields

D(1 — At?BAu™D — At’DB?Ge™Y = 0, (5.21)

showing that the velocity field™*? is not exactly divergence-free; the divergence has ¢
O(At?) error.

6. BOUNDARY CONDITIONS FOR THE CANONICAL FRACTIONAL-STEP METHODS

Canonical fractional-step methods of second-osj#itting accuracyhave been con-
structed based on approximate factorization. In order to obtain second-order-accurat
lutions by a fractional-step method, the accuracy of the boundary conditions should m
the splitting accuracy as well. The difficulty is that the boundary conditions on the nc
physical quantities are not givenpriori from the problem formulation and hence have tc
be determined from the split equations.

In this work, it is shown that the boundary conditions that are consistent with the s
equations to the splitting accuracy can be found in a systematic way. The general rul
systematic identification of the consistent boundary conditions is

(i) to approximate the expressions for the tentative velocity and pressure to the split
accuracy in terms of quantities known at the current time step; and
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(ii) to take the limit of the result as the boundary is approached.

The first approximation step involves conversion of implicit terms to the correspondi
explicit expressions and the second boundary-limit step may involve extrapolation to
boundary of the data in practice.

6.1. Boundary Condition on the Pressure

For boundary conditions on pressure, the Neumann type is considered herein, since
common practice to use it to compute pressure. It has been widely known that the boun
condition on the pressure is the major source of difficulties when fractional-step meth
are considered for computing incompressible flow problems. The greatest difficulty in
determination of the boundary condition on the presgte is primarily due to the fact
that the natural boundary condition on its countergat? is not available. Therefore,
one has taerivethe approximate expression for the pressure boundary condition in ter
of quantities that are available at the current time step.

In order to match the splitting accura€(At?), the approximate boundary condition
on the pressure suffices to be first-order accurate. As Perot [10] correctly pointed out
first-order accuracy of the pressup€+V is intrinsic in the equations of fractional-step
methods (see also Section 5). Attempts to improve the order of accuracy of a fractional-
method with an “improved” pressure boundary condition may yietde accurate results
which doesiotnecessarily lead to solutionsiaiproved order of accuracy his distinction
should be made explicit and clear.

The simplest choice to meet tky At) requirement for the pressure would be to approx
imateG¢™*Y in terms ofGe™ to O(At) sincesp™ is already known at the current time
step. Expanding ™ abouty™ in time,

3¢(ﬂ)
ot

oMY — o™ 1 At + O(At?), (6.1)
one finds that it suffices to keep the leading term alone to obtain the second-order-acc
results. By taking the limit of (6.1) as the boundary is approached, the consistent boun
condition on the pressure is obtained,

[Gnp™V]; = [Gno™]5 + O(AD), (6.2)
where
[le = X'L”QB['] (6.3)

denotes the limit as the boundasyis approached (boundary limit) afi4, = n - G denotes
the gradient in the directiom normal to the boundary. This boundary condition is referre
to as thecurrent pressure-gradient conditioihe value of the current pressure gradien
Go¢™ at the boundary may be determined by extrapolating to the boundary the pres:
field ¢™(x) known at the current time step. Since the pressure boundary condition |
been obtained independent of the choice of a fractional-step method, it can be used fo
fractional-step methods of second-order accuracy. This pressure boundary condition
may be considered as theiversalpressure boundary condition.
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An alternative expression for the pressure boundary condition can be obtained from
assembled equations (5.12), (5.5), and (5.18) of methods of type D, P, and M, res
tively. Approximation of these equations @(At?) with the termAtBu®™t? replaced by
AtBu™ + O(At?) yields the same expression for the pressure gradient, namely,

1
Gop™Y = E(r —u™D) + Bu®™ + O(A), (6.4)
because only first-order accuracy is required for the pressure. It should be pointed out th
implicit term Au™V in the assembled equation has been converted to explicit equivale
by the above approximation. Taking the limitto the boundary gives the alternative expres
for the pressure boundary condition,

[Gngp™P], = % (In-rle —n-ud™) + [n -Bu™], + O(Ab), (6.5)
Whereug‘*l’ is the value given by the natural boundary condition (2.2). The bounde
condition can be evaluated by extrapolating the dasmdBu™ to the boundary. This
alternative expression for the pressure boundary condition agrees with the current pre
gradient condition (6.2) t®(At).

It is apparent that the zero-pressure-gradient condition

[Gnp™P]; =0+ 0(D) (6.6)

of the marker-and-cell (MAC) method (Harlow and Welch [6]) is zeroth-order accurate ¢
therefore will produce a velocity field™ of only first-order accuracy (see for example
Armfield and Street [1]).

6.2. Boundary Conditions on the Tentative Velocities

The boundary conditions on the tentative velocities should be determined from the
equations and hence are method specific.

Boundary conditions for fractional-step methods of type . order to solve the mo-
mentum and Poisson equations (5.3a,b) of a method of type D, the boundary conditio
the tentative velocity* should be specified because solving the corresponding algebr
equations (5.1a) involves inversion of the matrigeandDG. However, the update of the
velocityu™? in (5.3c) involves assignment of data at the interior gridpoints only, for whic
no boundary conditions are required. The boundary condition on the tentative veibcity
of this method can be found from either of the split equations (5.3a,c); the two should ¢
the same result t® (At?). The former equation (5.3a) gives

u* — AtBU* =, (6.7)
which under the approximation 0 (At?) reduces to
u* =1 + AtBu™ + O(At?). (6.8)
The second-order boundary condition on the tentative velocity is given by

[u]g = [r]e + At[Bu™], + O(At?). (6.9)
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An alternative yet equivalent boundary condition whcan be derived from the latter
equation (5.3c) in a simpler way. Approximating the pressure gradigdt &) using the
expansion (6.1) and taking the limit to the boundary yields

[U]e = ug™™ + At[Go™], + O(At?), (6.10)

which should agree with the equivalent expression (6.9)tat?). Kim and Moin [8] used
a different approach to arrive at the same result.

Boundary conditions for fractional-step methods of typelR.this method, the boundary
condition onu* needs to be determined for solution of the coupled equations (5.11b,c). T
boundary condition can be found by examining either of the split equations (5.11a,c)
the same procedure explained for methods of type D. From the former equation (5.11.
immediately follows that

[u]g = [r]s + O(At?). (6.11)

Approximating the latter equation (5.11c) @(At?) and taking the boundary limit of the
result gives the alternative expression:

[uls = us™™ + At[Gop™ — Bu™] 5+ O(At?). (6.12)

The boundary condition on the tentative velocity of methods D and P differs by
amountAt[Bu™]g, which reflects the difference in splitting between the two method
This explicit term derives from approximation of its implicit equivalextBu®™+? in the
operatorAu™b . It would be of interest to investigate the effect of the implicit-to-explici
conversion on stability of the solutions.

Boundary conditions for fractional-step methods of type WMhe method of type M
consists of three split parts and, therefore, there are two tentative velacitesd u™*.
The solution of Egs. (5.17b,c) requires the boundary values aihdu**. The boundary
conditions on the two tentative velocities can be found by examining the split equati
(5.17a,d). The first equation (5.17a) immediately gives the boundary condition on the
tentative velocityu*:

[U]e = [r]e + O(ALD). (6.13)

Approximating the last equation (5.17d) @(At?) and taking the boundary limit of the
result yields the boundary condition on the second tentative velotity

[u]e = ug™™ + At[Ge™], + O(AtD). (6.14)

The boundary conditions (6.13) and (6.14) are identical to those of methods of type P
D, respectively, reminiscent of the mixture of the two methods.

The consistent boundary conditions on the tentative velocities of methods of type C
and M are summarized in Table IV.
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TABLE IV
Consistent Second-Order Boundary Conditions for Canonical
Fractional-Step Methods of Type D, P, and M

Type Gn¢(n+l) u* u
D Gnrp™ or u™b + AtGo™ or —
n-[At72(r — u™D) + Bu™] r + AtBu®™
P Gnp™ or u™d + At(Go™ — Bu™) or —
n-[At=4(r — u™D) + Bu™] r
M Gnp™ or u™d + At(Go™ — Bu™) or u™d + AtGeo™ or
n-[At=1(r — u™D) + Bu™] r r + AtBu®™

Note All expressions are to be evaluated by extrapolating the corresponding data at the interior of tf
computational domain, excep*? for which the natural boundary condition is imposed.

6.3. Boundary Conditions for a Flow with a Steady Zero-Velocity Wall

Because many standard flow cases consist of steady zero-velocity walls,
ugt =ug’ =-.. =0, (6.15)

it is of interest to examine the boundary conditions on the pressure and tentative veloc
that can be used in computation of these flows. A stationary no-slip wall is a typical exan
of such a boundary condition. In this case, the nonlinear terms vanish at the boundary
hence only the viscous terms appear in the boundary conditions on the tentative veloc

Suppose that the second-order implicit Crank—Nicolson method is used for the visc
terms and an arbitrary second-order explicit method is used for the nonlinear Eems:
%Re‘llL, wherelL is the Laplacian operator. Hereinafter, this time-advancement meth
shall be referred to as the AXCN method. The boundary conditions for the methods of t
D, P, and M are compared in Table V.

The alternative pressure boundary condition (6.5) reduces to

[Gnp™Y], = é\[n -Lu™] g + O(Ab). (6.16)

TABLE V
Second-Order Boundary Conditions for Canonical Methods:
Flow with Steady Zero-Velocity Wall

Type Gnp™v u* u
D Gnop™ or %an -Lu®™ é—te[Lu“” —
P Gnp™ or Rlen -Lu® %&Lu“‘) —
M Gnop™ or %}n -Lu®™ ZA—Rte]Lu‘”’ %]Lu‘”’

Note.The nonlinear terms are treated explicitly and viscous terms are treated
by the Crank—Nicolson method (AXCN method).
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This result could have been obtained from the unsplit momentum equations (2.3) \
Go™D = Gp™D + O(At) (see Orszag, Israeli, and Deville [9]; Karniadakis, Israeli
and Orszag [7]).

The boundary conditions on the tentative velocities depend on the method. A metho
type D has

At

U] = e

[Lu™], + O(At?). (6.17)
The boundary condition for a method of type P is

* _ ﬂ (n) 2
[u]g = ZRe[]Lu |g + O(At?). (6.18)

The boundary conditions on the two tentative velocities of a method M are

At
(U] = oo [Lu™]g + O(At?), (6.19a)

sk At n
[U*]g = aa[Lu< '] g + O(AY). (6.19b)

7. FRACTIONAL-STEP METHODS WITH THE HOMOGENEOUS PRESSURE
BOUNDARY CONDITION

7.1. New Pressure that Satisfies the Homogeneous Neumann Boundary Condition

In constructing a numerical method, a transformation of the pressure variable that
duces the pressure boundary condition to the homogeneous one is of great interest
transformation involves only a quantity already known at the current time step. Otherw
evaluation of the boundary condition would require extrapolation of data. Because pres
is linear in the Navier—Stokes equations and its time derivative is absent, one is free to
tract (or add) an arbitrary scalar function from pressure but still obtains the same solut
provided that the change is properly incorporated in the equations and the boundary cc
tions. (The initial condition may also be altered, but this issue does not affect the acce
given here.) The system matrix of a fractional-step method remains unchanged under s
transformation, because only the right-hand sigets modified whose values are available
at the current time step.

The procedure to carry out the transformation for a fractional-step method is to de
the new pressuré admitting the homogeneous boundary condition and make change:
the right-hand side vector and tentative velocity. Since the approach taken in the pre
procedure is straightforward and general, existing, or prospective second-order fractic
step methods can be transformed into the proposed form without difficulty. Once afractio
step method that admits the homogeneous pressure boundary condition (HPBC) is del
the boundary condition on the new tentative velocity can be found by following the gene
rule delineated in Section 6. In fact, the boundary condition on the new tentative velos
becomes simpler in general.

Define the new pressu@™b by subtracting a scalar functiop from the fictitious
pressurey "D,

M — ptD _ gy (7.1)
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where is regarded also as a pressure-like scalar variable. We wish to detegnsineh
that the new pressue™V satisfies the homogeneous Neumann boundary condition:

[Gh@™P], =0. (7.2)
Note that the requirement (7.2) f&™+V is equivalent to demanding

[an]B = [Gn¢(n+l)]37 (73)

from which ¢ may be determined. Singg"+? is not available at the current time step,
however, one has to seek an alternative for it. Approximatiop®fV in terms ofgp™
would be the simplest alternative. Expandipi™ abouty™ in time,

8(1)(”)
¢(n+l) — ¢(n) + At o + O(Atz), (7.4)
and keeping the leading term alone for a second-order method, we see that the require

(7.3) fory is approximately satisfied t®(At) by choosing
¥ = ¢™ + O(AD). (7.5)
This choice ofyr in turn determines the new pressure-like variable
DM — AGMHD — (D _ ™ (7.6)

Note that the current pressure-gradient condition (6.2) is in fact equivalent to the homc
neous boundary condition (7.2) di"*Y. Note also thato ™V is of the orderO(At) and

is essentially a delta-form formulation of pressure (see Beam and Warming [2]; Warm
and Beam [14]). The delta-form pressure, which appeared previously in Van Kan [13]
Dukowicz and Dvinsky [5], is conceptually equivalent. However, the purpose was to
hance the order of accuracy of the pressure-gradient term, a superfluous attempt (se
discussion in Section 6) that turned out to achieve the goal when the homogeneous boul
condition was used, and the issues pertinent to boundary conditions were not address

We shall now examine how the tentative veloaityand right-hand side change due

to the change in the pressure variable and then derive the boundary condition on the
tentative velocity. The changeuri andr depends on the splitting in the individual fractional-
step methods. The new methods derived from methods of type D, P, and M are denote
methods of type B, P*, and Mf, respectively.

7.2. Fractional-Step Methods with the Homogeneous Pressure Boundary Condition

Methods of type Dwith the homogeneous pressure boundary conditi@y. replacing
the pressure™*V with the new pressuré™V in the method of type D (5.3), the new
fractional-step method can be written as

AU =Thews DU, — AtDGO™Y =0, (7.7a,b)

u™d L AtGO™Y = ur,, (7.7¢c)
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Comparing the velocity-update equation (7.7c) with the original version (5.3c) of t
method, one finds that the new tentative velocity is

Ul = U* — AtGop™. (7.8)

new —

Likewise, the new right-hand sid@ey is given by
Mew="r — AtAGo™ =r — AtGo™ + O(AL?). (7.9)

The new fractional-step method of typé Bdmitting the homogeneous pressure boundat
condition has been obtained as

u™b 4 AtGO™D = u*, (7.10c)

where the notation,,, has been replaced loy. This method is conceptually the same as

that used by Choi and Moin [3] in a fully implicit computation of a turbulent channel flow

Figure 3 shows schematic of the projection taking place in the new method (7.10). |
shown that the new tentative velocity

Wp = u* = u™V 4 AtGe™D = ™D L O(At?) (7.11)

is projected into the divergence-free subspace with the gradient versp "*+? separated
out, yielding the solution ™Y, Comparison with the projection in the original method (se
Fig. 1) reveals that the tentative velocity is much clo§iAt?), to the solutioru®™? in
the new method than in the original, where the difference i© @kt). This is because in

b HPBC
Gradignt
vector field
Aflepia . il Wy
A N
| ,/', .
LGy .~ ni
A S (oD,
: '—'ﬁ,;s—__\ j
AL ‘
Divergence-free o(A?) O(At?)
vector field

FIG.3. Schematic of the projection in a new second-order method of typesing the “delta-form” pressure
MY = gD _ p™: ——pm present method—-—>, Navier-Stokes equations. Instead of the usuak=
u™b + O(At), a new vector fieldi, = wp — AtGp™ = u™? 4+ O(At?) is used for the projection in this
method. The solution™? is exactly divergence-free (within machine roundoff) and has a second-order er
u™b = uys + O(At?). Since the associated pressure gradient is so s@alf;? = O(At), the homogeneous
Neumann boundary conditiorzpp™+?]g = 0, can be used for second-order computations.
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the original method the tentative velocity is obtained from Eg. (5.3) without the presst
gradient term, whereas in the new method the new tentative velotisycomputed with
the pressure-gradient teritG¢™ that approximates the actual pressure gradietrt p

to O(At?). This salient feature of improved accuracy built in the tentative velocity is tt
key to arriving at the simple boundary condition for this method as we shall see below.

Methods of type Pwith the homogeneous pressure boundary conditi@y exactly the
same procedure for the method of typg Ehe new fractional-step method of typé ¢an
be constructed. The new tentative velocity is given by

Uiy = U* — AtGop™ (7.12)
and new right-hand sidg,e, is
rneW =TI — AIG¢(n). (7.13)

Note that the new right-hand side here is almost the same as that in the method of
P, differing only byO(At?). The new fractional-step method of typ& Which admits the
homogeneous pressure boundary condition is thus obtained as

u* =r — AtGop™, (D + AtDB)u* — AtDGO™D =0, (7.14a,b)
AU L AtGO™MD =y, (7.14c)
Methods of type K with the homogeneous pressure boundary conditighn.new

fractional-step method of type Mcan be constructed by using the same procedure e
plained above. The new tentative velocities are given by

Uiy = U — AtGo™ + O(AL?), (7.15a)
Upew = U™ — AtGo™ (7.15b)

and new right-hand sidg,e,, is
Fnew =" — AtGop™ + O(At?). (7.16)

Comparison of these new variables with those of methods of typend P indicates the
hybrid nature of this method. The new fractional-step method of typeavi be written as

u* =r — AtGo™, (D + AtDB)U* — AtDGO™Y =0, (7.17a,b)
Au™ = u*, (7.17¢c)

™+ + AtGOMHD — (7.17d)

7.3. Boundary Conditions on the Tentative Velocities

Since all tentative velocitias® andu** of the new methods differ respectively from those
of the corresponding original methods byAtG¢™ to O(At?), the boundary conditions
differ also by the same amount. The boundary conditions for methods of tyge Pand
M* are summarized in Table VI. Compare the difference with those of the original meth
in Table IV.

The boundary condition on* of a method of type Dis given by

[U*]g = ud™™ + O(At?). (7.18)
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TABLE VI
Consistent Second-Order Boundary Conditions
for Fractional-Step Methods D*, P*, and M*

Type Gpdm+Y u* u
D* 0 u+D _
P 0 u™b — AtBu™or —

r— AtGe™
M* 0 u™d — AtBu™ or u+y
r— AtGe™

Note.All expressions are to be evaluated by extrapolating the corre-
sponding data at the interior of the computational domain, excéiit
for which the natural boundary condition is imposed.

The boundary condition becomes so simple because the new tentative vatoisitynly

O(At?) away from the velocity™?, as indicated by (7.11) and in Fig. 3. This same

boundary condition is satisfied by the second tentative veloc¢itpf a method of type N.
The boundary condition on* of methods of type Pand M is given by

[rle — At[Go™], + O(At?), (7.19a)

[U]e =
ug™t — At[Bu™], + O(At?). (7.19b)

7.4. Boundary Conditions for a Flow with a Steady Zero-Velocity Wall

The boundary conditions in the special case when the natural boundary conditio
imposed by the steady zero velocity (6.15) are considered. The time-advancement us
the semi-implicit AXCN method (see Section 6.3). Table VIl shows the summary of t
boundary conditions for the tentative velocities of methods of tyhePD and M.

The boundary condition (7.18) ari of a method of type Bbecomes homogeneous in
this case:

[u*]g = 0+ O(AL?). (7.20)

Note that this result does not depend on the time-advancement scheme, whether ex
or implicit. This condition is also satisfied hy* of a method of type K. The tentative

TABLE VII
Second-Order Boundary Conditions for Methods OF, P*,
and M*: Flow with Steady Zero-Velocity Wall

Type G oMY u* u

D* 0 0 —
At

P 0 ——Lu® —
2Re
At

M* 0 ——Lu® 0
2Re

Note.The nonlinear terms are treated explicitly and viscous terms are
treated by the Crank—Nicolson method (AXCN method).
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velocity u* of methods of type Pand M has the boundary condition given by

* _ _ﬁ (n) 2
[u]g = ZRe[ILu |g + O(At?). (7.21)

8. SUMMARY AND CONCLUDING REMARKS

Second-order fractional-step methods and boundary conditions for the incompres:
Navier—Stokes equations have been studied. The presentwork has been focused on (i) i
fication and analysis of all possible splitting methods of second-order splitting accuracy
(ii) determination of consistent boundary conditions that yield second-order accurate s
tions. The account and results given here do not depend on any particular time-advance
schemes, discretization methods for the spatial derivatives, or the geometry of the cor
tational domain.

In order to construct splitting methods, exact and approximate factorization technio
have been used to split the system matrix of the fully discretized Navier—Stokes equatiol
the most general way. These splitting methods are always guaranteed to have the acc
of the time-advancement scheme, thanks to the distinguished property of approximate
torization. It has been found that there are three canonical (independent and nondegen
types D, P, and M of splitting methods to which all other second-order splitting schemes
either degenerate or equivalentdinergence-freenethods of type D, the pressure-gradien
term of the Navier—Stokes equations is approximate@ tat?); and inpressure-accurate
methods of type P, the divergence operator (or continuity equation) is approximate
O(At?). Both operators are approximated in a method of type M, which can be regar
as mixture (or hybrid) of methods of type D and P.

The discrete projection that takes place in the canonical methods has been analyz
the light of Chorin’s decomposition idea. In a method of type D, the velocity i€t
is exactly divergence-free and the “fictitious” pressyf&™? differs from the “actual”
pressurep™V by O(At), whereas the velocity field™V of a method of type P is ap-
proximately divergence-fre€ - u™ = O(At?), but the fictitious pressure is identical to
the actual pressure. Therefore, a method of type D is recommended for computatiol
which the incompressibility of the velocity field is required or preferred to pressure, wh
a method of type P is better suited to the cases when highly accurate pressure has pt
over the incompressibility requirement or the actual pressure should be computed dt
time advancement.

A systematic procedure to find the consistent boundary conditions on the tentative velc
u* and pressure ™D has been developed, which consists of approximation of the sg
equations to the splitting accuracy and the boundary limit of the result. The approxima
involves conversion of implicit terms to explicit equivalents and the boundary limitis carri
out by extrapolation of known data in practice. The results are summarized in Table IV.
pressure boundary condition suffices to be first-order accurate and attempts with “impro
boundary conditions do not necessarily lead to improvement iarthex of accuracy of the
solutions. It has been found that the current pressure-gradient boundary condition doe
depend on the type of fractional-step methods and thus can be regarded as being univ
[Gho™D]g = [Ghp™]s. The alternative expression for the pressure boundary conditi
turned out to be also independent of the type of fractional-step methods. It has been sl
that the boundary condition on the tentative velocityof the canonical methods can be
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expressed in terms of the natural boundary conditig?ﬁl) and derivatives of quantities
available at the current time step (to be evaluated by extrapolation).

Second-order fractional-step methods B, and M that admit the homogeneous pres-
sure boundary conditionG},®"* Y]z = 0 have been derived by using a transformatior
which involves the delta-form pressubé"™? = ¢"+D — ™ The system matrices of the
methods remain the same under the transformation but the tentative velocity is modi
by AtG¢™. The boundary conditions obtained for the new methods are summarizec
Table VI. In the new method of type*Dthe boundary condition on the tentative velocity
u* becomesy*]g = u‘B”“), a great simplification due to the improved accuracy built int
the new tentative velocity* = u™D + O(At?).
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